Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano
{"title":"解决有奇点的椭圆问题的富集多节点谢泼德配位法","authors":"Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano","doi":"10.1016/j.apnum.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001776/pdfft?md5=bad5b96a018721e6a24777c89fe88152&pid=1-s2.0-S0168927424001776-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The enriched multinode Shepard collocation method for solving elliptic problems with singularities\",\"authors\":\"Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano\",\"doi\":\"10.1016/j.apnum.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001776/pdfft?md5=bad5b96a018721e6a24777c89fe88152&pid=1-s2.0-S0168927424001776-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The enriched multinode Shepard collocation method for solving elliptic problems with singularities
In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.