半线上的希尔伯特变换近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Donatella Occorsio , Woula Themistoclakis
{"title":"半线上的希尔伯特变换近似值","authors":"Donatella Occorsio ,&nbsp;Woula Themistoclakis","doi":"10.1016/j.apnum.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>The paper concerns the weighted Hilbert transform of locally continuous functions on the semiaxis. By using a filtered de la Vallée Poussin type approximation polynomial recently introduced by the authors, it is proposed a new “truncated” product quadrature rule (VP- rule). Several error estimates are given for different smoothness degrees of the integrand ensuring the uniform convergence in Zygmund and Sobolev spaces. Moreover, new estimates are proved for the weighted Hilbert transform and for its approximation (L-rule) by means of the truncated Lagrange interpolation at the same Laguerre zeros. The theoretical results are validated by the numerical experiments that show a better performance of the VP-rule versus the L-rule.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001764/pdfft?md5=412b695fdae44005e406f5ee943aff4b&pid=1-s2.0-S0168927424001764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximation of the Hilbert transform on the half–line\",\"authors\":\"Donatella Occorsio ,&nbsp;Woula Themistoclakis\",\"doi\":\"10.1016/j.apnum.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper concerns the weighted Hilbert transform of locally continuous functions on the semiaxis. By using a filtered de la Vallée Poussin type approximation polynomial recently introduced by the authors, it is proposed a new “truncated” product quadrature rule (VP- rule). Several error estimates are given for different smoothness degrees of the integrand ensuring the uniform convergence in Zygmund and Sobolev spaces. Moreover, new estimates are proved for the weighted Hilbert transform and for its approximation (L-rule) by means of the truncated Lagrange interpolation at the same Laguerre zeros. The theoretical results are validated by the numerical experiments that show a better performance of the VP-rule versus the L-rule.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001764/pdfft?md5=412b695fdae44005e406f5ee943aff4b&pid=1-s2.0-S0168927424001764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及半轴上局部连续函数的加权希尔伯特变换。通过使用作者最近引入的滤波 de la Vallée Poussin 型逼近多项式,提出了一种新的 "截断 "乘积正交规则(VP- 规则)。针对积分的不同平滑度,给出了若干误差估计值,以确保在齐格蒙特空间和索博列夫空间的均匀收敛。此外,还证明了加权希尔伯特变换的新估计值,以及通过在相同的拉盖尔零点进行截断拉格朗日插值对其近似(L-规则)的新估计值。数值实验验证了这些理论结果,实验结果表明 VP 规则与 L 规则相比具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of the Hilbert transform on the half–line

The paper concerns the weighted Hilbert transform of locally continuous functions on the semiaxis. By using a filtered de la Vallée Poussin type approximation polynomial recently introduced by the authors, it is proposed a new “truncated” product quadrature rule (VP- rule). Several error estimates are given for different smoothness degrees of the integrand ensuring the uniform convergence in Zygmund and Sobolev spaces. Moreover, new estimates are proved for the weighted Hilbert transform and for its approximation (L-rule) by means of the truncated Lagrange interpolation at the same Laguerre zeros. The theoretical results are validated by the numerical experiments that show a better performance of the VP-rule versus the L-rule.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信