有限域上的两类 LCD BCH 码

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuqing Fu , Hongwei Liu
{"title":"有限域上的两类 LCD BCH 码","authors":"Yuqing Fu ,&nbsp;Hongwei Liu","doi":"10.1016/j.ffa.2024.102478","DOIUrl":null,"url":null,"abstract":"<div><p>BCH codes form a special subclass of cyclic codes and have been extensively studied in the past decades. Determining the parameters of BCH codes, however, has been an important but difficult problem. Recently, in order to further investigate the dual codes of BCH codes, the concept of dually-BCH codes was proposed. In this paper, we study BCH codes of lengths <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, both of which are LCD codes. The dimensions of narrow-sense BCH codes of length <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> with designed distance <span><math><mi>δ</mi><mo>=</mo><mi>ℓ</mi><msup><mrow><mi>q</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>1</mn></math></span> are determined, where <span><math><mi>q</mi><mo>&gt;</mo><mn>2</mn></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>. Lower bounds on the minimum distances of the dual codes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> are developed for odd <em>q</em>, which are good in some cases. Moreover, sufficient and necessary conditions for the even-like subcodes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> being dually-BCH codes are presented, where <em>q</em> is odd and <span><math><mi>m</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102478"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two classes of LCD BCH codes over finite fields\",\"authors\":\"Yuqing Fu ,&nbsp;Hongwei Liu\",\"doi\":\"10.1016/j.ffa.2024.102478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>BCH codes form a special subclass of cyclic codes and have been extensively studied in the past decades. Determining the parameters of BCH codes, however, has been an important but difficult problem. Recently, in order to further investigate the dual codes of BCH codes, the concept of dually-BCH codes was proposed. In this paper, we study BCH codes of lengths <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, both of which are LCD codes. The dimensions of narrow-sense BCH codes of length <span><math><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> with designed distance <span><math><mi>δ</mi><mo>=</mo><mi>ℓ</mi><msup><mrow><mi>q</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>1</mn></math></span> are determined, where <span><math><mi>q</mi><mo>&gt;</mo><mn>2</mn></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>. Lower bounds on the minimum distances of the dual codes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> are developed for odd <em>q</em>, which are good in some cases. Moreover, sufficient and necessary conditions for the even-like subcodes of narrow-sense BCH codes of length <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span> being dually-BCH codes are presented, where <em>q</em> is odd and <span><math><mi>m</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"99 \",\"pages\":\"Article 102478\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001175\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001175","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

BCH 码是循环码的一个特殊子类,在过去几十年中得到了广泛的研究。然而,确定 BCH 码的参数一直是一个重要但困难的问题。最近,为了进一步研究 BCH 码的对偶码,人们提出了双 BCH 码的概念。本文研究了有限域 Fq 上长度为 qm+1q+1 和 qm+1 的 BCH 码,它们都是 LCD 码。确定了长度为 qm+1q+1 且设计距离为 δ=ℓqm-12+1 的窄义 BCH 码的尺寸,其中 q>2 和 2≤ℓ≤q-1.对于奇数 q,提出了长度为 qm+1 的窄义 BCH 码对偶码的最小距离下限,在某些情况下,下限是很好的。此外,还提出了长度为 qm+1 的窄义 BCH 码的偶样子码成为对偶 BCH 码的充分和必要条件,其中 q 为奇数,m≢0(mod4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two classes of LCD BCH codes over finite fields

BCH codes form a special subclass of cyclic codes and have been extensively studied in the past decades. Determining the parameters of BCH codes, however, has been an important but difficult problem. Recently, in order to further investigate the dual codes of BCH codes, the concept of dually-BCH codes was proposed. In this paper, we study BCH codes of lengths qm+1q+1 and qm+1 over the finite field Fq, both of which are LCD codes. The dimensions of narrow-sense BCH codes of length qm+1q+1 with designed distance δ=qm12+1 are determined, where q>2 and 2q1. Lower bounds on the minimum distances of the dual codes of narrow-sense BCH codes of length qm+1 are developed for odd q, which are good in some cases. Moreover, sufficient and necessary conditions for the even-like subcodes of narrow-sense BCH codes of length qm+1 being dually-BCH codes are presented, where q is odd and m0(mod4).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信