Shadi Salamatian Hosseini , Amir Nabavi-Kivi , Majid R Ayatollahi , Michal Petru
{"title":"喷嘴直径对 FDM-PLA 样品拉伸和断裂行为的影响","authors":"Shadi Salamatian Hosseini , Amir Nabavi-Kivi , Majid R Ayatollahi , Michal Petru","doi":"10.1016/j.prostr.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Fused Deposition Modeling (FDM) technique is a subcategory of additive manufacturing processes that works by extruding a fine polymeric filament on the heated bed. The current research paper surveys the influence of nozzle diameter as a manufacturing parameter on the mechanical properties and mode I fracture behavior of the FDM-PLA samples. Four different nozzle diameters of 0.4, 0.6, 0.8, and 1 mm with two raster configurations of 0/90° and 45/-45° were considered for printing the dog-bone and Semi-Circular Bending (SCB) samples. Also, to evaluate the fracture resistance of FDM-PLA pre-cracked samples, the critical value of J-integral (<em>Jc</em>) was used and calculated through a finite element analysis. The obtained results indicated that the raster angle of 45/-45° resulted in higher mechanical properties compared to 0/90° one, also, the 1 mm nozzle diameter presented a better performance from a mechanical property point of view. The SCB sample printed through the 1 mm nozzle diameter and 45/-45° raster orientation had the highest value of <em>Jc</em> (10400 J/m<sup>2</sup>). Besides, the crack extension paths were monitored and discussed comprehensively.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624005419/pdf?md5=ba8c3b50a74cc5ddd3f84c7a6726826c&pid=1-s2.0-S2452321624005419-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Nozzle Diameter on Tensile and Fracture Behavior of FDM-PLA Samples\",\"authors\":\"Shadi Salamatian Hosseini , Amir Nabavi-Kivi , Majid R Ayatollahi , Michal Petru\",\"doi\":\"10.1016/j.prostr.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fused Deposition Modeling (FDM) technique is a subcategory of additive manufacturing processes that works by extruding a fine polymeric filament on the heated bed. The current research paper surveys the influence of nozzle diameter as a manufacturing parameter on the mechanical properties and mode I fracture behavior of the FDM-PLA samples. Four different nozzle diameters of 0.4, 0.6, 0.8, and 1 mm with two raster configurations of 0/90° and 45/-45° were considered for printing the dog-bone and Semi-Circular Bending (SCB) samples. Also, to evaluate the fracture resistance of FDM-PLA pre-cracked samples, the critical value of J-integral (<em>Jc</em>) was used and calculated through a finite element analysis. The obtained results indicated that the raster angle of 45/-45° resulted in higher mechanical properties compared to 0/90° one, also, the 1 mm nozzle diameter presented a better performance from a mechanical property point of view. The SCB sample printed through the 1 mm nozzle diameter and 45/-45° raster orientation had the highest value of <em>Jc</em> (10400 J/m<sup>2</sup>). Besides, the crack extension paths were monitored and discussed comprehensively.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005419/pdf?md5=ba8c3b50a74cc5ddd3f84c7a6726826c&pid=1-s2.0-S2452321624005419-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624005419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Nozzle Diameter on Tensile and Fracture Behavior of FDM-PLA Samples
Fused Deposition Modeling (FDM) technique is a subcategory of additive manufacturing processes that works by extruding a fine polymeric filament on the heated bed. The current research paper surveys the influence of nozzle diameter as a manufacturing parameter on the mechanical properties and mode I fracture behavior of the FDM-PLA samples. Four different nozzle diameters of 0.4, 0.6, 0.8, and 1 mm with two raster configurations of 0/90° and 45/-45° were considered for printing the dog-bone and Semi-Circular Bending (SCB) samples. Also, to evaluate the fracture resistance of FDM-PLA pre-cracked samples, the critical value of J-integral (Jc) was used and calculated through a finite element analysis. The obtained results indicated that the raster angle of 45/-45° resulted in higher mechanical properties compared to 0/90° one, also, the 1 mm nozzle diameter presented a better performance from a mechanical property point of view. The SCB sample printed through the 1 mm nozzle diameter and 45/-45° raster orientation had the highest value of Jc (10400 J/m2). Besides, the crack extension paths were monitored and discussed comprehensively.