{"title":"针对空间参数不确定的弹塑性问题的非线性区间有限元方法","authors":"","doi":"10.1016/j.compstruc.2024.107476","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonlinear interval finite element method for elastic–plastic problems with spatially uncertain parameters\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruc.2024.107476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002050\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002050","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A nonlinear interval finite element method for elastic–plastic problems with spatially uncertain parameters
This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.