ZrO2 改性对用于费托合成的 Co/SiC 催化剂活性和选择性的促进作用

Q3 Energy
Min WANG , Shupeng GUO , Jinshan XU , Liuzhong LI , Congbiao CHEN , Zhongyi MA , Litao JIA , Bo HOU , Debao LI
{"title":"ZrO2 改性对用于费托合成的 Co/SiC 催化剂活性和选择性的促进作用","authors":"Min WANG ,&nbsp;Shupeng GUO ,&nbsp;Jinshan XU ,&nbsp;Liuzhong LI ,&nbsp;Congbiao CHEN ,&nbsp;Zhongyi MA ,&nbsp;Litao JIA ,&nbsp;Bo HOU ,&nbsp;Debao LI","doi":"10.1016/S1872-5813(24)60439-1","DOIUrl":null,"url":null,"abstract":"<div><p>Co/SiC catalysts have exhibited excellent performance in Fischer-Tropsch synthesis reaction. However, few research focuses on investigating the effect of SiC supports surface properties of on catalyst performance. In this study, ZrO<sub>2</sub> was utilized to modify the SiC surface, leading to the preparation of a series of Co-ZrO<sub>2</sub>/SiC catalysts. The physicochemical properties of the catalyst were comprehensively analyzed by using N<sub>2</sub> adsorption, XRD, H<sub>2</sub>-TPR, XPS analyses. Catalytic performance was evaluated using a fixed bed reactor, shedding light on the effect of ZrO<sub>2</sub> modified SiC support on cobalt-based Fischer-Tropsch synthesis catalysts. The results indicated that ZrO<sub>2</sub> surface modification on SiC resulted in an enhanced reduction degree of Co/SiC catalysts. Additionally, ZrO<sub>2</sub> exhibited strong interaction with the amorphous phase on the SiC surface, thereby weakening the interaction between Co and the amorphous phase. This led to an increase in the electron density of cobalt species, consequently improving the selectivity of Co/SiC catalysts towards long-chain hydrocarbons.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 8","pages":"Pages 1088-1094"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis\",\"authors\":\"Min WANG ,&nbsp;Shupeng GUO ,&nbsp;Jinshan XU ,&nbsp;Liuzhong LI ,&nbsp;Congbiao CHEN ,&nbsp;Zhongyi MA ,&nbsp;Litao JIA ,&nbsp;Bo HOU ,&nbsp;Debao LI\",\"doi\":\"10.1016/S1872-5813(24)60439-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Co/SiC catalysts have exhibited excellent performance in Fischer-Tropsch synthesis reaction. However, few research focuses on investigating the effect of SiC supports surface properties of on catalyst performance. In this study, ZrO<sub>2</sub> was utilized to modify the SiC surface, leading to the preparation of a series of Co-ZrO<sub>2</sub>/SiC catalysts. The physicochemical properties of the catalyst were comprehensively analyzed by using N<sub>2</sub> adsorption, XRD, H<sub>2</sub>-TPR, XPS analyses. Catalytic performance was evaluated using a fixed bed reactor, shedding light on the effect of ZrO<sub>2</sub> modified SiC support on cobalt-based Fischer-Tropsch synthesis catalysts. The results indicated that ZrO<sub>2</sub> surface modification on SiC resulted in an enhanced reduction degree of Co/SiC catalysts. Additionally, ZrO<sub>2</sub> exhibited strong interaction with the amorphous phase on the SiC surface, thereby weakening the interaction between Co and the amorphous phase. This led to an increase in the electron density of cobalt species, consequently improving the selectivity of Co/SiC catalysts towards long-chain hydrocarbons.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 8\",\"pages\":\"Pages 1088-1094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

Co/SiC 催化剂在费托合成反应中表现出卓越的性能。然而,很少有研究关注 SiC 载体表面性质对催化剂性能的影响。本研究利用 ZrO2 对 SiC 表面进行改性,制备了一系列 Co-ZrO2/SiC 催化剂。通过使用 N2 吸附、XRD、H2-TPR 和 XPS 分析,对催化剂的物理化学性质进行了全面分析。利用固定床反应器对催化性能进行了评估,从而揭示了 ZrO2 改性 SiC 载体对钴基费托合成催化剂的影响。结果表明,在 SiC 上进行 ZrO2 表面改性可提高 Co/SiC 催化剂的还原度。此外,ZrO2 与 SiC 表面的无定形相具有很强的相互作用,从而削弱了 Co 与无定形相之间的相互作用。这导致钴物种的电子密度增加,从而提高了 Co/SiC 催化剂对长链烃的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis

Co/SiC catalysts have exhibited excellent performance in Fischer-Tropsch synthesis reaction. However, few research focuses on investigating the effect of SiC supports surface properties of on catalyst performance. In this study, ZrO2 was utilized to modify the SiC surface, leading to the preparation of a series of Co-ZrO2/SiC catalysts. The physicochemical properties of the catalyst were comprehensively analyzed by using N2 adsorption, XRD, H2-TPR, XPS analyses. Catalytic performance was evaluated using a fixed bed reactor, shedding light on the effect of ZrO2 modified SiC support on cobalt-based Fischer-Tropsch synthesis catalysts. The results indicated that ZrO2 surface modification on SiC resulted in an enhanced reduction degree of Co/SiC catalysts. Additionally, ZrO2 exhibited strong interaction with the amorphous phase on the SiC surface, thereby weakening the interaction between Co and the amorphous phase. This led to an increase in the electron density of cobalt species, consequently improving the selectivity of Co/SiC catalysts towards long-chain hydrocarbons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信