Zuzheng Wang , Yongxu Lu , Yuanyuan Zhou , Jiaojiao Ji
{"title":"SMIAltmetric:用于评估推特上科学论文社交媒体影响力的综合指标 (X)","authors":"Zuzheng Wang , Yongxu Lu , Yuanyuan Zhou , Jiaojiao Ji","doi":"10.1016/j.joi.2024.101562","DOIUrl":null,"url":null,"abstract":"<div><p>The rise of social media has significantly influenced scholarly communication, knowledge dissemination, and research evaluation, leading to the enrichment of alternative metrics (altmetrics) for evaluating academic papers’ social impact, which assesses the social impact of academic papers through online activities, including reading, bookmarking, downloading, and commenting. However, these altmetrics often focus on the number of mentions on social media rather than thoroughly evaluating the source, content, and dissemination of these mentions. To address this gap, this study introduces the social media impact altmetric (SMIAltmetric), which is based on 44,087 publications and 860,680 tweets (now “posts”), a comprehensive scoring system for evaluating scientific papers on Twitter (now “X”), using diverse features, including literature-related, social media engagement-related, user-related, and content-related features. Employing Altmetric Attention Acores (AAS) as labels, we tested eight machine learning algorithms, with XGBoost demonstrating the highest accuracy at 0.8672. Crucial factors influencing SMIAltmetric, as identified by the SHAP value, were followers, retweets, mentions, and citation. Furthermore, consistency analysis and convergent validation between the proposed SMIAltmetric and AAS confirm the reliability and finer differentiation of SMIAltmetric. The proposed SMIAltmetric provides a more comprehensive understanding of a paper’s social media impact, enhancing the evaluation of scientific discourse and its engagement with society.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 3","pages":"Article 101562"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMIAltmetric: A comprehensive metric for evaluating social media impact of scientific papers on Twitter (X)\",\"authors\":\"Zuzheng Wang , Yongxu Lu , Yuanyuan Zhou , Jiaojiao Ji\",\"doi\":\"10.1016/j.joi.2024.101562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rise of social media has significantly influenced scholarly communication, knowledge dissemination, and research evaluation, leading to the enrichment of alternative metrics (altmetrics) for evaluating academic papers’ social impact, which assesses the social impact of academic papers through online activities, including reading, bookmarking, downloading, and commenting. However, these altmetrics often focus on the number of mentions on social media rather than thoroughly evaluating the source, content, and dissemination of these mentions. To address this gap, this study introduces the social media impact altmetric (SMIAltmetric), which is based on 44,087 publications and 860,680 tweets (now “posts”), a comprehensive scoring system for evaluating scientific papers on Twitter (now “X”), using diverse features, including literature-related, social media engagement-related, user-related, and content-related features. Employing Altmetric Attention Acores (AAS) as labels, we tested eight machine learning algorithms, with XGBoost demonstrating the highest accuracy at 0.8672. Crucial factors influencing SMIAltmetric, as identified by the SHAP value, were followers, retweets, mentions, and citation. Furthermore, consistency analysis and convergent validation between the proposed SMIAltmetric and AAS confirm the reliability and finer differentiation of SMIAltmetric. The proposed SMIAltmetric provides a more comprehensive understanding of a paper’s social media impact, enhancing the evaluation of scientific discourse and its engagement with society.</p></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":\"18 3\",\"pages\":\"Article 101562\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724000750\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000750","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
SMIAltmetric: A comprehensive metric for evaluating social media impact of scientific papers on Twitter (X)
The rise of social media has significantly influenced scholarly communication, knowledge dissemination, and research evaluation, leading to the enrichment of alternative metrics (altmetrics) for evaluating academic papers’ social impact, which assesses the social impact of academic papers through online activities, including reading, bookmarking, downloading, and commenting. However, these altmetrics often focus on the number of mentions on social media rather than thoroughly evaluating the source, content, and dissemination of these mentions. To address this gap, this study introduces the social media impact altmetric (SMIAltmetric), which is based on 44,087 publications and 860,680 tweets (now “posts”), a comprehensive scoring system for evaluating scientific papers on Twitter (now “X”), using diverse features, including literature-related, social media engagement-related, user-related, and content-related features. Employing Altmetric Attention Acores (AAS) as labels, we tested eight machine learning algorithms, with XGBoost demonstrating the highest accuracy at 0.8672. Crucial factors influencing SMIAltmetric, as identified by the SHAP value, were followers, retweets, mentions, and citation. Furthermore, consistency analysis and convergent validation between the proposed SMIAltmetric and AAS confirm the reliability and finer differentiation of SMIAltmetric. The proposed SMIAltmetric provides a more comprehensive understanding of a paper’s social media impact, enhancing the evaluation of scientific discourse and its engagement with society.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.