具有水感应特性的 B 位高熵 BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 的合成

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS
Alexandra C. Austin , Amy J. Knorpp , Jon G. Bell , Huw Shiel , Luca Artiglia , Katharina Marquardt , Michael Stuer
{"title":"具有水感应特性的 B 位高熵 BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 的合成","authors":"Alexandra C. Austin ,&nbsp;Amy J. Knorpp ,&nbsp;Jon G. Bell ,&nbsp;Huw Shiel ,&nbsp;Luca Artiglia ,&nbsp;Katharina Marquardt ,&nbsp;Michael Stuer","doi":"10.1016/j.oceram.2024.100646","DOIUrl":null,"url":null,"abstract":"<div><p>A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100646"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400110X/pdfft?md5=e7ce818e7f6e9335419cc56276e9911f&pid=1-s2.0-S266653952400110X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of B-site high-entropy BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 with water sensing properties\",\"authors\":\"Alexandra C. Austin ,&nbsp;Amy J. Knorpp ,&nbsp;Jon G. Bell ,&nbsp;Huw Shiel ,&nbsp;Luca Artiglia ,&nbsp;Katharina Marquardt ,&nbsp;Michael Stuer\",\"doi\":\"10.1016/j.oceram.2024.100646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.</p></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"19 \",\"pages\":\"Article 100646\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266653952400110X/pdfft?md5=e7ce818e7f6e9335419cc56276e9911f&pid=1-s2.0-S266653952400110X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952400110X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952400110X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

通过固态合成法制备了含有五种不同 B 位阳离子的钡基包晶结构陶瓷。利用 X 射线衍射和能量色散 X 射线光谱验证了合成材料的相位和化学均匀性,结果表明成功合成了具有 Ba A 位和 Ti、Hf、Zr、Y、Nb、B 位阳离子的单相透辉石结构。利用超高真空 X 射线光电子能谱揭示了组成元素的价态。采用传统烧结、两步烧结和火花等离子烧结法形成了晶粒生长有限的致密颗粒。烧结颗粒的室温电特性通过电化学阻抗光谱进行了研究,在含水环境中,电导率提高了两个数量级。在含水和干燥条件下进行的同步辐射环境压力 X 射线光电子能谱分析表明,电导率的提高与羟基加入到包晶结构中有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of B-site high-entropy BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 with water sensing properties

Synthesis of B-site high-entropy BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 with water sensing properties

A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信