跨磁性隧道结的位移电流驱动的磁化动力学

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal
{"title":"跨磁性隧道结的位移电流驱动的磁化动力学","authors":"C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal","doi":"10.1103/physrevapplied.22.024019","DOIUrl":null,"url":null,"abstract":"Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Co</mi><mi>Fe</mi><mi mathvariant=\"normal\">B</mi></mrow><mo>/</mo><mrow><mi>Mg</mi><mi mathvariant=\"normal\">O</mi></mrow></math>-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetization dynamics driven by displacement currents across a magnetic tunnel junction\",\"authors\":\"C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal\",\"doi\":\"10.1103/physrevapplied.22.024019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Co</mi><mi>Fe</mi><mi mathvariant=\\\"normal\\\">B</mi></mrow><mo>/</mo><mrow><mi>Mg</mi><mi mathvariant=\\\"normal\\\">O</mi></mrow></math>-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024019\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

了解磁隧道结(MTJ)的高频传输特性对于开发快速运行的自旋电子存储器和射频设备至关重要。在此,我们利用时间分辨磁光克尔效应技术,研究了 CoFeB/MgO 基 MTJ 中随频率变化的电容电流效应及其对磁化动态的影响。在我们的器件中,工作频率为千兆赫,我们发现了一个毫安数量级的大位移电流,它不会破坏 MTJ 的隧道势垒。重要的是,这种电流会产生奥斯特磁场和自旋轨道力矩,诱导磁化动力学。我们的发现为制造在高电流条件下运行的坚固 MTJ 器件带来了希望,同时也凸显了电容阻抗在高频磁传输技术中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetization dynamics driven by displacement currents across a magnetic tunnel junction

Magnetization dynamics driven by displacement currents across a magnetic tunnel junction
Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in CoFeB/MgO-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信