用于百万像素阵列的集成了超导纳米线单光子探测器的纳米ryotron波纹计数器

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Matteo Castellani, Owen Medeiros, Reed A. Foster, Alessandro Buzzi, Marco Colangelo, Joshua C. Bienfang, Alessandro Restelli, Karl K. Berggren
{"title":"用于百万像素阵列的集成了超导纳米线单光子探测器的纳米ryotron波纹计数器","authors":"Matteo Castellani, Owen Medeiros, Reed A. Foster, Alessandro Buzzi, Marco Colangelo, Joshua C. Bienfang, Alessandro Restelli, Karl K. Berggren","doi":"10.1103/physrevapplied.22.024020","DOIUrl":null,"url":null,"abstract":"Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>6</mn></msup></math> readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrate that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires patterned on niobium nitride thin films. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof of principle, we first experimentally demonstrate the building block of the counter, an integer-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> frequency divider with <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> ranging from 2 to 5. Then, we demonstrate photon-counting operations at 405 nm and 1550 nm by coupling an SNSPD with a two-digit nanocryotron counter partially integrated on chip. The two-digit counter can operate in either base 2 or base 3, with a bit-error rate lower than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> and a count rate of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>7</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">s</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. We simulate circuit architectures for integrated readout of the counter state and we evaluate the capabilities of reading out an SNSPD megapixel array that would collect up to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>12</mn></msup></math> counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"28 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays\",\"authors\":\"Matteo Castellani, Owen Medeiros, Reed A. Foster, Alessandro Buzzi, Marco Colangelo, Joshua C. Bienfang, Alessandro Restelli, Karl K. Berggren\",\"doi\":\"10.1103/physrevapplied.22.024020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mn>6</mn></msup></math> readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrate that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires patterned on niobium nitride thin films. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math>-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof of principle, we first experimentally demonstrate the building block of the counter, an integer-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> frequency divider with <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> ranging from 2 to 5. Then, we demonstrate photon-counting operations at 405 nm and 1550 nm by coupling an SNSPD with a two-digit nanocryotron counter partially integrated on chip. The two-digit counter can operate in either base 2 or base 3, with a bit-error rate lower than <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> and a count rate of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mn>7</mn></msup><mspace width=\\\"0.2em\\\"></mspace><msup><mrow><mrow><mi mathvariant=\\\"normal\\\">s</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. We simulate circuit architectures for integrated readout of the counter state and we evaluate the capabilities of reading out an SNSPD megapixel array that would collect up to <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mn>12</mn></msup></math> counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024020\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

减少将热量带入低温恒温器的电缆数量是所有低温电子器件的关键问题。尤其是超导纳米线单光子探测器(SNSPD)阵列可能需要超过 106 根读出线。在低温下进行信号处理操作可能是一种解决方案。超导纳米线三端器件纳米ryotrons 是在光子计数应用中将传感和电子器件集成到与 SNSPD 相同的技术平台上的理想候选器件。在这项研究中,我们证明了利用氮化铌薄膜上的超导纳米线,可以读出、处理、编码和存储 SNSPD 的输出。我们特别介绍了纳米克里奥特伦波纹计数器的设计和开发,该计数器可检测输入电压尖峰,并将脉冲数转换为 N 位数值。计数基数可从 2 调整到更高的数值,从而在不扩大电路的情况下实现更高的最大计数。作为原理验证,我们首先通过实验演示了计数器的构件,即一个 N 为 2 至 5 的整数 N 分频器。然后,我们通过将 SNSPD 与部分集成在芯片上的两位数纳米ryotron 计数器耦合,演示了在 405 nm 和 1550 nm 波长下的光子计数操作。两位数计数器可以以基数 2 或基数 3 运行,误码率低于 2×10-4,计数率为 107s-1。我们模拟了集成读出计数器状态的电路结构,并评估了读出 SNSPD 百万像素阵列的能力,该阵列每秒最多可收集 1012 个计数。这项工作的成果,加上我们最近发表的关于纳米微管移位寄存器和逻辑门的论文,为开发纳米微管处理器铺平了道路,多种超导平台都可能从中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays

Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays
Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 106 readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrate that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires patterned on niobium nitride thin films. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an N-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof of principle, we first experimentally demonstrate the building block of the counter, an integer-N frequency divider with N ranging from 2 to 5. Then, we demonstrate photon-counting operations at 405 nm and 1550 nm by coupling an SNSPD with a two-digit nanocryotron counter partially integrated on chip. The two-digit counter can operate in either base 2 or base 3, with a bit-error rate lower than 2×104 and a count rate of 107s1. We simulate circuit architectures for integrated readout of the counter state and we evaluate the capabilities of reading out an SNSPD megapixel array that would collect up to 1012 counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信