{"title":"具有截止硬电势的玻尔兹曼-费米-狄拉克方程解向平衡的定量弛豫","authors":"T. Borsoni , B. Lods","doi":"10.1016/j.jfa.2024.110599","DOIUrl":null,"url":null,"abstract":"<div><p>We provide the first quantitative result of convergence to equilibrium in the context of the spatially homogeneous Boltzmann-Fermi-Dirac equation associated with hard potentials interactions under angular cut-off assumption, providing an explicit – algebraic – rate of convergence to Fermi-Dirac steady solutions. This result complements the quantitative convergence result of <span><span>[15]</span></span> and is based upon new uniform-in-time-and-<em>ε</em> <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> bound on the solutions.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002878/pdfft?md5=a9b3b994e8d50ed70d9aa61570d4cae9&pid=1-s2.0-S0022123624002878-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials\",\"authors\":\"T. Borsoni , B. Lods\",\"doi\":\"10.1016/j.jfa.2024.110599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide the first quantitative result of convergence to equilibrium in the context of the spatially homogeneous Boltzmann-Fermi-Dirac equation associated with hard potentials interactions under angular cut-off assumption, providing an explicit – algebraic – rate of convergence to Fermi-Dirac steady solutions. This result complements the quantitative convergence result of <span><span>[15]</span></span> and is based upon new uniform-in-time-and-<em>ε</em> <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> bound on the solutions.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002878/pdfft?md5=a9b3b994e8d50ed70d9aa61570d4cae9&pid=1-s2.0-S0022123624002878-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002878\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002878","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials
We provide the first quantitative result of convergence to equilibrium in the context of the spatially homogeneous Boltzmann-Fermi-Dirac equation associated with hard potentials interactions under angular cut-off assumption, providing an explicit – algebraic – rate of convergence to Fermi-Dirac steady solutions. This result complements the quantitative convergence result of [15] and is based upon new uniform-in-time-and-ε bound on the solutions.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis