贝尔特拉米场的局部化:纳维-斯托克斯方程的全局平稳解与涡流重联

IF 1.7 2区 数学 Q1 MATHEMATICS
Gennaro Ciampa , Renato Lucà
{"title":"贝尔特拉米场的局部化:纳维-斯托克斯方程的全局平稳解与涡流重联","authors":"Gennaro Ciampa ,&nbsp;Renato Lucà","doi":"10.1016/j.jfa.2024.110610","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a class of divergence-free vector fields on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> obtained after a suitable localization of <em>Beltrami fields</em>. First, we use them as initial data to construct unique global smooth solutions of the three dimensional Navier-Stokes equations. The relevant fact here is that these initial data can be chosen to be large in any critical space for the Navier–Stokes problem, however they satisfy the nonlinear smallness assumption introduced in <span><span>[10]</span></span>. As a further application of the method, we use these vector fields to provide analytical example of vortex-reconnection for the three-dimensional Navier-Stokes equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. To do so, we exploit the ideas developed in <span><span>[13]</span></span> but differently from this latter we cannot rely on the non-trivial homotopy of the three-dimensional torus. To overcome this obstacle we use a different topological invariant, i.e. the number of hyperbolic zeros of the vorticity field.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002982/pdfft?md5=bd4ea9dcf91041c5a984937fea1ce849&pid=1-s2.0-S0022123624002982-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Localization of Beltrami fields: Global smooth solutions and vortex reconnection for the Navier-Stokes equations\",\"authors\":\"Gennaro Ciampa ,&nbsp;Renato Lucà\",\"doi\":\"10.1016/j.jfa.2024.110610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a class of divergence-free vector fields on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> obtained after a suitable localization of <em>Beltrami fields</em>. First, we use them as initial data to construct unique global smooth solutions of the three dimensional Navier-Stokes equations. The relevant fact here is that these initial data can be chosen to be large in any critical space for the Navier–Stokes problem, however they satisfy the nonlinear smallness assumption introduced in <span><span>[10]</span></span>. As a further application of the method, we use these vector fields to provide analytical example of vortex-reconnection for the three-dimensional Navier-Stokes equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. To do so, we exploit the ideas developed in <span><span>[13]</span></span> but differently from this latter we cannot rely on the non-trivial homotopy of the three-dimensional torus. To overcome this obstacle we use a different topological invariant, i.e. the number of hyperbolic zeros of the vorticity field.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002982/pdfft?md5=bd4ea9dcf91041c5a984937fea1ce849&pid=1-s2.0-S0022123624002982-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002982\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002982","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

首先,我们用它们作为初始数据来构建三维纳维-斯托克斯方程的唯一全局平滑解。与此相关的事实是,这些初始数据可以在纳维-斯托克斯问题的任何临界空间中选择为大数据,但它们必须满足 .作为该方法的进一步应用,我们利用这些矢量场为......上的三维纳维-斯托克斯方程提供了涡流-连接的分析示例。为此,我们利用了《......》中提出的观点,但与后者不同的是,我们不能依赖三维环的非三维同构。为了克服这一障碍,我们使用了不同的拓扑不变量,即涡度场的双曲零点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization of Beltrami fields: Global smooth solutions and vortex reconnection for the Navier-Stokes equations

We introduce a class of divergence-free vector fields on R3 obtained after a suitable localization of Beltrami fields. First, we use them as initial data to construct unique global smooth solutions of the three dimensional Navier-Stokes equations. The relevant fact here is that these initial data can be chosen to be large in any critical space for the Navier–Stokes problem, however they satisfy the nonlinear smallness assumption introduced in [10]. As a further application of the method, we use these vector fields to provide analytical example of vortex-reconnection for the three-dimensional Navier-Stokes equations on R3. To do so, we exploit the ideas developed in [13] but differently from this latter we cannot rely on the non-trivial homotopy of the three-dimensional torus. To overcome this obstacle we use a different topological invariant, i.e. the number of hyperbolic zeros of the vorticity field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信