负弯曲紧凑流形上薛定谔方程的斯特里查兹估计值

IF 1.7 2区 数学 Q1 MATHEMATICS
Matthew D. Blair , Xiaoqi Huang , Christopher D. Sogge
{"title":"负弯曲紧凑流形上薛定谔方程的斯特里查兹估计值","authors":"Matthew D. Blair ,&nbsp;Xiaoqi Huang ,&nbsp;Christopher D. Sogge","doi":"10.1016/j.jfa.2024.110613","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain improved Strichartz estimates for solutions of the Schrödinger equation on negatively curved compact manifolds which improve the classical universal results of Burq, Gérard and Tzvetkov <span><span>[11]</span></span> in this geometry. In the case where the spatial manifold is a hyperbolic surface we are able to obtain no-loss <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>x</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></msubsup></math></span>-estimates on intervals of length <span><math><mi>log</mi><mo>⁡</mo><mi>λ</mi><mo>⋅</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for initial data whose frequencies are comparable to <em>λ</em>, which, given the role of the Ehrenfest time, is the natural analog of the universal results in <span><span>[11]</span></span>. We also obtain improved endpoint Strichartz estimates for manifolds of nonpositive curvature, which cannot hold for spheres.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strichartz estimates for the Schrödinger equation on negatively curved compact manifolds\",\"authors\":\"Matthew D. Blair ,&nbsp;Xiaoqi Huang ,&nbsp;Christopher D. Sogge\",\"doi\":\"10.1016/j.jfa.2024.110613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain improved Strichartz estimates for solutions of the Schrödinger equation on negatively curved compact manifolds which improve the classical universal results of Burq, Gérard and Tzvetkov <span><span>[11]</span></span> in this geometry. In the case where the spatial manifold is a hyperbolic surface we are able to obtain no-loss <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>x</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></msubsup></math></span>-estimates on intervals of length <span><math><mi>log</mi><mo>⁡</mo><mi>λ</mi><mo>⋅</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for initial data whose frequencies are comparable to <em>λ</em>, which, given the role of the Ehrenfest time, is the natural analog of the universal results in <span><span>[11]</span></span>. We also obtain improved endpoint Strichartz estimates for manifolds of nonpositive curvature, which cannot hold for spheres.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400301X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400301X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了薛定谔方程在负弯曲紧凑流形上的解的改进斯特里查兹估计值,从而改进了布克、热拉尔和茨维特科夫在这种几何中的经典通用结果。在空间流形是双曲面的情况下,我们能够获得初始数据长度区间的无损估计,这些初始数据的频率相当于 ,考虑到艾伦费斯特时间的作用,这是对......中普遍结果的自然类比。对于非正曲率流形,我们还得到了改进的端点斯特里查兹估计值,而这对于球形是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strichartz estimates for the Schrödinger equation on negatively curved compact manifolds

We obtain improved Strichartz estimates for solutions of the Schrödinger equation on negatively curved compact manifolds which improve the classical universal results of Burq, Gérard and Tzvetkov [11] in this geometry. In the case where the spatial manifold is a hyperbolic surface we are able to obtain no-loss Lt,xqc-estimates on intervals of length logλλ1 for initial data whose frequencies are comparable to λ, which, given the role of the Ehrenfest time, is the natural analog of the universal results in [11]. We also obtain improved endpoint Strichartz estimates for manifolds of nonpositive curvature, which cannot hold for spheres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信