Xinyu Cao , Ming Gong , Anjan Tula , Xi Chen , Rafiqul Gani , Venkat Venkatasubramanian
{"title":"用于纯组件特性估计的改进型机器学习模型","authors":"Xinyu Cao , Ming Gong , Anjan Tula , Xi Chen , Rafiqul Gani , Venkat Venkatasubramanian","doi":"10.1016/j.eng.2023.08.024","DOIUrl":null,"url":null,"abstract":"<div><p>Information on the physicochemical properties of chemical species is an important prerequisite when performing tasks such as process design and product design. However, the lack of extensive data and high experimental costs hinder the development of prediction techniques for these properties. Moreover, accuracy and predictive capabilities still limit the scope and applicability of most property estimation methods. This paper proposes a new Gaussian process-based modeling framework that aims to manage a discrete and high-dimensional input space related to molecular structure representation with the group-contribution approach. A warping function is used to map discrete input into a continuous domain in order to adjust the correlation between different compounds. Prior selection techniques, including prior elicitation and prior predictive checking, are also applied during the building procedure to provide the model with more information from previous research findings. The framework is assessed using datasets of varying sizes for 20 pure component properties. For 18 out of the 20 pure component properties, the new models are found to give improved accuracy and predictive power in comparison with other published models, with and without machine learning.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924001590/pdfft?md5=1467de2f6cb3888be2501c5f8217cd9b&pid=1-s2.0-S2095809924001590-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An Improved Machine Learning Model for Pure Component Property Estimation\",\"authors\":\"Xinyu Cao , Ming Gong , Anjan Tula , Xi Chen , Rafiqul Gani , Venkat Venkatasubramanian\",\"doi\":\"10.1016/j.eng.2023.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Information on the physicochemical properties of chemical species is an important prerequisite when performing tasks such as process design and product design. However, the lack of extensive data and high experimental costs hinder the development of prediction techniques for these properties. Moreover, accuracy and predictive capabilities still limit the scope and applicability of most property estimation methods. This paper proposes a new Gaussian process-based modeling framework that aims to manage a discrete and high-dimensional input space related to molecular structure representation with the group-contribution approach. A warping function is used to map discrete input into a continuous domain in order to adjust the correlation between different compounds. Prior selection techniques, including prior elicitation and prior predictive checking, are also applied during the building procedure to provide the model with more information from previous research findings. The framework is assessed using datasets of varying sizes for 20 pure component properties. For 18 out of the 20 pure component properties, the new models are found to give improved accuracy and predictive power in comparison with other published models, with and without machine learning.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001590/pdfft?md5=1467de2f6cb3888be2501c5f8217cd9b&pid=1-s2.0-S2095809924001590-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924001590\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001590","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Improved Machine Learning Model for Pure Component Property Estimation
Information on the physicochemical properties of chemical species is an important prerequisite when performing tasks such as process design and product design. However, the lack of extensive data and high experimental costs hinder the development of prediction techniques for these properties. Moreover, accuracy and predictive capabilities still limit the scope and applicability of most property estimation methods. This paper proposes a new Gaussian process-based modeling framework that aims to manage a discrete and high-dimensional input space related to molecular structure representation with the group-contribution approach. A warping function is used to map discrete input into a continuous domain in order to adjust the correlation between different compounds. Prior selection techniques, including prior elicitation and prior predictive checking, are also applied during the building procedure to provide the model with more information from previous research findings. The framework is assessed using datasets of varying sizes for 20 pure component properties. For 18 out of the 20 pure component properties, the new models are found to give improved accuracy and predictive power in comparison with other published models, with and without machine learning.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.