水蒸气环境下铀后期氧化过程中的氢化物预测

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
S.R. Monisha Natchiar , Richard E. Hewitt , Phillip D.D. Monks
{"title":"水蒸气环境下铀后期氧化过程中的氢化物预测","authors":"S.R. Monisha Natchiar ,&nbsp;Richard E. Hewitt ,&nbsp;Phillip D.D. Monks","doi":"10.1016/j.ssi.2024.116651","DOIUrl":null,"url":null,"abstract":"<div><p>We present a reaction-advection-diffusion (RAD) model for (low temperature) uranium oxidation in a water-vapour environment, where both <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> and <span><math><msup><mi>H</mi><mo>•</mo></msup></math></span> are diffusing. In this model an intermediate <span><math><msub><mi>UH</mi><mn>3</mn></msub></math></span> phase sits between the bulk <span><math><mi>U</mi></math></span> metal and a protective surface <span><math><msub><mi>UO</mi><mn>2</mn></msub></math></span> layer. This surface oxide layer only remains adhered up to a maximum depth <span><math><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup></math></span> before spallation occurs leading to significantly increased diffusive transport across the spalled layer. Under these conditions, this mechanistic model is shown to support <em>both</em> a parabolic (<span><math><mo>∝</mo><msqrt><mi>t</mi></msqrt></math></span>) oxide growth up to the point of spallation, before smoothly transitioning to a linear (<span><math><mo>∝</mo><mi>t</mi></math></span>) oxidation solution at later times. In the late-stage linear regime, a <span><math><msub><mi>UO</mi><mn>2</mn></msub><mo>−</mo><msub><mi>UH</mi><mn>3</mn></msub></math></span> interface propagates into the bulk metal at a constant velocity of<span><span><span><math><mfrac><mrow><msubsup><mi>D</mi><mn>1</mn><mrow><mfenced><mn>3</mn></mfenced><mo>∗</mo></mrow></msubsup><msup><mi>C</mi><mo>∗</mo></msup></mrow><mrow><mn>2</mn><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup><msubsup><mi>N</mi><mn>2</mn><mo>∗</mo></msubsup></mrow></mfrac><mo>;</mo></math></span></span></span></p><p><span><math><msubsup><mi>D</mi><mn>1</mn><mrow><mfenced><mn>3</mn></mfenced><mo>∗</mo></mrow></msubsup></math></span> being the diffusion coefficient of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> in <span><math><msub><mi>UO</mi><mn>2</mn></msub></math></span> and <span><math><msup><mi>C</mi><mo>∗</mo></msup><mo>/</mo><msubsup><mi>N</mi><mn>2</mn><mo>∗</mo></msubsup></math></span> the peak relative concentration of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> to <span><math><mi>U</mi></math></span>. This model predicts that the intermediate hydride layer approaches a constant thickness in the linear regime, with a <span><math><msub><mi>UH</mi><mn>3</mn></msub><mo>−</mo><mi>U</mi></math></span> interface propagating into the bulk metal at the same velocity. The length scale of this emergent hydride layer is shown to be most sensitive to the diffusivity of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> in <span><math><msub><mi>UH</mi><mn>3</mn></msub></math></span> and the corresponding reaction rate constant. Plausible parameter values are shown to lead to hydride layers <span><math><mo>&lt;</mo><mn>10</mn></math></span> nm for room temperature oxidation in a vapour pressure of 20 Torr (<span><math><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup><mo>=</mo><mn>50</mn></math></span> nm) consistent with recent atom-probe tomography results.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116651"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydride prediction during late-stage oxidation of uranium in a water vapour environment\",\"authors\":\"S.R. Monisha Natchiar ,&nbsp;Richard E. Hewitt ,&nbsp;Phillip D.D. Monks\",\"doi\":\"10.1016/j.ssi.2024.116651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a reaction-advection-diffusion (RAD) model for (low temperature) uranium oxidation in a water-vapour environment, where both <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> and <span><math><msup><mi>H</mi><mo>•</mo></msup></math></span> are diffusing. In this model an intermediate <span><math><msub><mi>UH</mi><mn>3</mn></msub></math></span> phase sits between the bulk <span><math><mi>U</mi></math></span> metal and a protective surface <span><math><msub><mi>UO</mi><mn>2</mn></msub></math></span> layer. This surface oxide layer only remains adhered up to a maximum depth <span><math><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup></math></span> before spallation occurs leading to significantly increased diffusive transport across the spalled layer. Under these conditions, this mechanistic model is shown to support <em>both</em> a parabolic (<span><math><mo>∝</mo><msqrt><mi>t</mi></msqrt></math></span>) oxide growth up to the point of spallation, before smoothly transitioning to a linear (<span><math><mo>∝</mo><mi>t</mi></math></span>) oxidation solution at later times. In the late-stage linear regime, a <span><math><msub><mi>UO</mi><mn>2</mn></msub><mo>−</mo><msub><mi>UH</mi><mn>3</mn></msub></math></span> interface propagates into the bulk metal at a constant velocity of<span><span><span><math><mfrac><mrow><msubsup><mi>D</mi><mn>1</mn><mrow><mfenced><mn>3</mn></mfenced><mo>∗</mo></mrow></msubsup><msup><mi>C</mi><mo>∗</mo></msup></mrow><mrow><mn>2</mn><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup><msubsup><mi>N</mi><mn>2</mn><mo>∗</mo></msubsup></mrow></mfrac><mo>;</mo></math></span></span></span></p><p><span><math><msubsup><mi>D</mi><mn>1</mn><mrow><mfenced><mn>3</mn></mfenced><mo>∗</mo></mrow></msubsup></math></span> being the diffusion coefficient of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> in <span><math><msub><mi>UO</mi><mn>2</mn></msub></math></span> and <span><math><msup><mi>C</mi><mo>∗</mo></msup><mo>/</mo><msubsup><mi>N</mi><mn>2</mn><mo>∗</mo></msubsup></math></span> the peak relative concentration of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> to <span><math><mi>U</mi></math></span>. This model predicts that the intermediate hydride layer approaches a constant thickness in the linear regime, with a <span><math><msub><mi>UH</mi><mn>3</mn></msub><mo>−</mo><mi>U</mi></math></span> interface propagating into the bulk metal at the same velocity. The length scale of this emergent hydride layer is shown to be most sensitive to the diffusivity of <span><math><msup><mi>OH</mi><mo>−</mo></msup></math></span> in <span><math><msub><mi>UH</mi><mn>3</mn></msub></math></span> and the corresponding reaction rate constant. Plausible parameter values are shown to lead to hydride layers <span><math><mo>&lt;</mo><mn>10</mn></math></span> nm for room temperature oxidation in a vapour pressure of 20 Torr (<span><math><msubsup><mi>Δ</mi><mi>adh</mi><mo>∗</mo></msubsup><mo>=</mo><mn>50</mn></math></span> nm) consistent with recent atom-probe tomography results.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"415 \",\"pages\":\"Article 116651\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001991\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001991","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种(低温)铀在水蒸气环境中氧化的反应-平流-扩散(RAD)模型,在这种环境中,和都在扩散。在这一模型中,中间相位于块状金属和保护性表面层之间。在剥落发生之前,表面氧化层只能保持到最大深度,从而导致剥落层的扩散传输显著增加。在这些条件下,该机理模型支持抛物线()氧化物生长至剥落点,然后在后期平滑过渡到线性()氧化方案。在后期的线性机制中,界面以恒定的速度向块状金属中传播,速度为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydride prediction during late-stage oxidation of uranium in a water vapour environment

We present a reaction-advection-diffusion (RAD) model for (low temperature) uranium oxidation in a water-vapour environment, where both OH and H are diffusing. In this model an intermediate UH3 phase sits between the bulk U metal and a protective surface UO2 layer. This surface oxide layer only remains adhered up to a maximum depth Δadh before spallation occurs leading to significantly increased diffusive transport across the spalled layer. Under these conditions, this mechanistic model is shown to support both a parabolic (t) oxide growth up to the point of spallation, before smoothly transitioning to a linear (t) oxidation solution at later times. In the late-stage linear regime, a UO2UH3 interface propagates into the bulk metal at a constant velocity ofD13C2ΔadhN2;

D13 being the diffusion coefficient of OH in UO2 and C/N2 the peak relative concentration of OH to U. This model predicts that the intermediate hydride layer approaches a constant thickness in the linear regime, with a UH3U interface propagating into the bulk metal at the same velocity. The length scale of this emergent hydride layer is shown to be most sensitive to the diffusivity of OH in UH3 and the corresponding reaction rate constant. Plausible parameter values are shown to lead to hydride layers <10 nm for room temperature oxidation in a vapour pressure of 20 Torr (Δadh=50 nm) consistent with recent atom-probe tomography results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信