Ashfiqur Rahman, Nurun Nahar Lata, Bruna Grasielli Sebben, Darielle Dexheimer, Zezhen Cheng, Ricardo Henrique Moreton Godoi, Aivett Bilbao, Swarup China
{"title":"利用机器学习和单粒子测量增强对初级生物气溶胶粒子的检测","authors":"Ashfiqur Rahman, Nurun Nahar Lata, Bruna Grasielli Sebben, Darielle Dexheimer, Zezhen Cheng, Ricardo Henrique Moreton Godoi, Aivett Bilbao, Swarup China","doi":"10.1021/acsestengg.4c00262","DOIUrl":null,"url":null,"abstract":"Accurately identifying primary biological aerosol particles (PBAPs) using analytical techniques poses inherent challenges due to their resemblance to other atmospheric carbonaceous particles. We present a study of an enhanced method for detecting PBAPs by combining single-particle measurement with advanced supervised machine learning (SML) techniques. We analyzed ambient particles from a variety of environments and lab-generated standards, focusing on chemical composition for traditional rule-based and clustering approaches and incorporating morphological features into the SML approaches, neural networks and XGBoost, for improved accuracy. This study demonstrates that SML methods outperform traditional methods in quantifying PBAPs, achieving significant improvements in precision, recall, F1-score, and accuracy, leading to an increased number of detected PBAPs by at least 19%. The adaptability of the proposed XGBoost-based SML model is showcased in comparison to traditional methods in categorizing PBAPs for blind data sets from different geographical locations. Two field case studies were investigated, over agricultural land and Amazonia rain forest, representing relatively low and high concentrations of PBAPs, respectively, where XGBoost consistently detected up to 3.5 times more PBAPs than traditional methods. Precise detection of PBAPs in the atmosphere could significantly improve the prediction of climatic impacts by them.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Detection of Primary Biological Aerosol Particles Using Machine Learning and Single-Particle Measurement\",\"authors\":\"Ashfiqur Rahman, Nurun Nahar Lata, Bruna Grasielli Sebben, Darielle Dexheimer, Zezhen Cheng, Ricardo Henrique Moreton Godoi, Aivett Bilbao, Swarup China\",\"doi\":\"10.1021/acsestengg.4c00262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately identifying primary biological aerosol particles (PBAPs) using analytical techniques poses inherent challenges due to their resemblance to other atmospheric carbonaceous particles. We present a study of an enhanced method for detecting PBAPs by combining single-particle measurement with advanced supervised machine learning (SML) techniques. We analyzed ambient particles from a variety of environments and lab-generated standards, focusing on chemical composition for traditional rule-based and clustering approaches and incorporating morphological features into the SML approaches, neural networks and XGBoost, for improved accuracy. This study demonstrates that SML methods outperform traditional methods in quantifying PBAPs, achieving significant improvements in precision, recall, F1-score, and accuracy, leading to an increased number of detected PBAPs by at least 19%. The adaptability of the proposed XGBoost-based SML model is showcased in comparison to traditional methods in categorizing PBAPs for blind data sets from different geographical locations. Two field case studies were investigated, over agricultural land and Amazonia rain forest, representing relatively low and high concentrations of PBAPs, respectively, where XGBoost consistently detected up to 3.5 times more PBAPs than traditional methods. Precise detection of PBAPs in the atmosphere could significantly improve the prediction of climatic impacts by them.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Enhanced Detection of Primary Biological Aerosol Particles Using Machine Learning and Single-Particle Measurement
Accurately identifying primary biological aerosol particles (PBAPs) using analytical techniques poses inherent challenges due to their resemblance to other atmospheric carbonaceous particles. We present a study of an enhanced method for detecting PBAPs by combining single-particle measurement with advanced supervised machine learning (SML) techniques. We analyzed ambient particles from a variety of environments and lab-generated standards, focusing on chemical composition for traditional rule-based and clustering approaches and incorporating morphological features into the SML approaches, neural networks and XGBoost, for improved accuracy. This study demonstrates that SML methods outperform traditional methods in quantifying PBAPs, achieving significant improvements in precision, recall, F1-score, and accuracy, leading to an increased number of detected PBAPs by at least 19%. The adaptability of the proposed XGBoost-based SML model is showcased in comparison to traditional methods in categorizing PBAPs for blind data sets from different geographical locations. Two field case studies were investigated, over agricultural land and Amazonia rain forest, representing relatively low and high concentrations of PBAPs, respectively, where XGBoost consistently detected up to 3.5 times more PBAPs than traditional methods. Precise detection of PBAPs in the atmosphere could significantly improve the prediction of climatic impacts by them.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.