{"title":"土壤灭菌对烟草花叶病毒拮抗效率和烟草根瘤菌群落的影响","authors":"Suoni Liu , Zhipeng Xiao , Yansong Xiao , Tianbo Liu , Shaolong Wu , Zuohua Ren , Yuqiang Zhao , Qianjun Tang , Yunhua Xiao","doi":"10.1016/j.rhisph.2024.100941","DOIUrl":null,"url":null,"abstract":"<div><p>Soil microorganisms play a critical role in influencing plant growth and managing soil pathogens. <em>Tobacco mosaic virus</em> (TMV) induces significant economic losses in global agriculture and can impact the composition and function of soil microbial communities. Despite its importance, the interactions between viruses and soil microbial communities remain inadequately understood. In this study, we employed 16S rRNA gene sequencing coupled with bioinformatics analyses to thoroughly investigate the bacterial communities and physicochemical properties of the rhizosphere soils of healthy tobacco plants under both sterilized (WJ) and non-sterilized (YJ) conditions, as well as TMV-infected tobacco plants under both sterilized (WT) and non-sterilized (YT) conditions. Our findings demonstrated that TMV infection significantly modifies the physicochemical properties and bacterial community structure of rhizosphere soils, with these changes being more pronounced in non-sterilized soils. Moreover, the YT samples exhibited a more intricate network of bacterial interactions. They showed significant differences from WT samples in key bacterial genera that might be involved in the response to or antagonism of TMV. The genera <em>Burkholderia-Caballeronia-Paraburkholderia</em> and <em>Dyella</em> were highlighted. These results suggest that rhizosphere microorganisms actively respond to TMV infection, with a more pronounced response observed in non-sterilized soils. This study provides novel insights into the microbial dynamics associated with TMV infection and underscores the importance of soil microbial communities in plant health and disease resistance. Additionally, it offers an experimental framework for future research on soil-borne diseases, emphasizing the pivotal role of soil microbiota in disease ecology and soil impact.</p></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"31 ","pages":"Article 100941"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of soil sterilization on antagonistic efficiency against tobacco mosaic virus and the rhizosphere bacterial community in Nicotiana benthamiana\",\"authors\":\"Suoni Liu , Zhipeng Xiao , Yansong Xiao , Tianbo Liu , Shaolong Wu , Zuohua Ren , Yuqiang Zhao , Qianjun Tang , Yunhua Xiao\",\"doi\":\"10.1016/j.rhisph.2024.100941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil microorganisms play a critical role in influencing plant growth and managing soil pathogens. <em>Tobacco mosaic virus</em> (TMV) induces significant economic losses in global agriculture and can impact the composition and function of soil microbial communities. Despite its importance, the interactions between viruses and soil microbial communities remain inadequately understood. In this study, we employed 16S rRNA gene sequencing coupled with bioinformatics analyses to thoroughly investigate the bacterial communities and physicochemical properties of the rhizosphere soils of healthy tobacco plants under both sterilized (WJ) and non-sterilized (YJ) conditions, as well as TMV-infected tobacco plants under both sterilized (WT) and non-sterilized (YT) conditions. Our findings demonstrated that TMV infection significantly modifies the physicochemical properties and bacterial community structure of rhizosphere soils, with these changes being more pronounced in non-sterilized soils. Moreover, the YT samples exhibited a more intricate network of bacterial interactions. They showed significant differences from WT samples in key bacterial genera that might be involved in the response to or antagonism of TMV. The genera <em>Burkholderia-Caballeronia-Paraburkholderia</em> and <em>Dyella</em> were highlighted. These results suggest that rhizosphere microorganisms actively respond to TMV infection, with a more pronounced response observed in non-sterilized soils. This study provides novel insights into the microbial dynamics associated with TMV infection and underscores the importance of soil microbial communities in plant health and disease resistance. Additionally, it offers an experimental framework for future research on soil-borne diseases, emphasizing the pivotal role of soil microbiota in disease ecology and soil impact.</p></div>\",\"PeriodicalId\":48589,\"journal\":{\"name\":\"Rhizosphere\",\"volume\":\"31 \",\"pages\":\"Article 100941\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhizosphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245221982400096X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221982400096X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Impact of soil sterilization on antagonistic efficiency against tobacco mosaic virus and the rhizosphere bacterial community in Nicotiana benthamiana
Soil microorganisms play a critical role in influencing plant growth and managing soil pathogens. Tobacco mosaic virus (TMV) induces significant economic losses in global agriculture and can impact the composition and function of soil microbial communities. Despite its importance, the interactions between viruses and soil microbial communities remain inadequately understood. In this study, we employed 16S rRNA gene sequencing coupled with bioinformatics analyses to thoroughly investigate the bacterial communities and physicochemical properties of the rhizosphere soils of healthy tobacco plants under both sterilized (WJ) and non-sterilized (YJ) conditions, as well as TMV-infected tobacco plants under both sterilized (WT) and non-sterilized (YT) conditions. Our findings demonstrated that TMV infection significantly modifies the physicochemical properties and bacterial community structure of rhizosphere soils, with these changes being more pronounced in non-sterilized soils. Moreover, the YT samples exhibited a more intricate network of bacterial interactions. They showed significant differences from WT samples in key bacterial genera that might be involved in the response to or antagonism of TMV. The genera Burkholderia-Caballeronia-Paraburkholderia and Dyella were highlighted. These results suggest that rhizosphere microorganisms actively respond to TMV infection, with a more pronounced response observed in non-sterilized soils. This study provides novel insights into the microbial dynamics associated with TMV infection and underscores the importance of soil microbial communities in plant health and disease resistance. Additionally, it offers an experimental framework for future research on soil-borne diseases, emphasizing the pivotal role of soil microbiota in disease ecology and soil impact.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.