Amjid Rafique , Isabel Ferreira , Nenad Bundaleski , O.M.N.D. Teodoro , Ana C. Baptista
{"title":"利用电化学剥离独立碳纱电极提高纤维素-汗液基电解质柔性超级电容器的电荷存储容量","authors":"Amjid Rafique , Isabel Ferreira , Nenad Bundaleski , O.M.N.D. Teodoro , Ana C. Baptista","doi":"10.1016/j.flatc.2024.100724","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) provides an interface between different electronic devices such as flexible electronics, and e-textiles to capture and receive real-time data and help humans to devise systems that will adequately respond to these environmental stimuli. The main limitations of these devices to work 24/7 are the lack of continuous power supply and easy integration into textiles to perform their functions. The other issues are poor adhesion of active materials with substrates and peeling-off of active material from the electrode substrates and consequently, degradation of electrochemical performance. A potential and evolving strategy is fabricating a current collector-less and integrable carbon yarn-based energy storage device. Herein, we are presenting a facile and novel technique to exfoliate carbon yarn fibers to enhance their electrochemical performance by 3 orders of magnitude. Activated carbon yarn wires acting as current collector-less electrodes along with cellulose acetate-based composite separators offer a large surface area to simulated sweat electrolyte ions and show a gravimetric capacitance of 11.28 Fg<sup>−1</sup> at the scan rate of 5 mVs<sup>−1</sup>. Activated carbon yarn-based symmetric supercapacitor device in a simulated sweat solution electrolyte offers excellent cyclic and bending stability with over 95 % capacitance retention in both tests.</p></div><div><h3>Theoretical insight</h3><p>Supercapacitors (SCs) comprise many active and passive elements. The most passive and vital elements are current collectors, separators, binders, electrolytes, and packaging. Two key elements, current collector and binders can be eliminated by developing current collector-free or free-standing electrodes. Carbonaceous materials such as graphene <span><span>[1]</span></span>, <span><span>[2]</span></span>, carbon nanotubes (CNT) <span><span>[3]</span></span>, porous carbon <span><span>[2]</span></span>, and carbon onions<span><span>[4]</span></span>, <span><span>[5]</span></span> are common alternatives of active materials for SCs electrodes owing to their low cost, chemical stability, large surface area, and high electrical conductivity. These active materials show exceptional attributes such as long cyclic life, and high-rate capability owing to their intrinsic operation mechanism e.g., surface charge storage due to large surface area. However, they also suffer from low specific capacitance ascribed to low surface area exposed to electrolyte ions and low charge storage due to poor wettability. The most efficient technique to address this problem is to incorporate doped heteroatoms or surface functional groups such as surface oxygen groups present on the surface of carbon yarn. The inclusion of these doped heteroatoms and functional groups boosts the intrinsic properties, such as electrical conductivity, and wettability. The increased electro-active surface area offers more active sites for electrolyte ions, resulting in more charge storage and higher pseudocapacitance <span><span>[6]</span></span>, <span><span>[7]</span></span>, <span><span>[8]</span></span>.</p><p>Carbon yarn comprised of long-chain carbon filaments of 2.5–5 µm in radius, excellent conductivity, high chemical and mechanical stability, and light weightiness make it a potential candidate as an active material or a free-standing electrode for SCs. However, due to its low specific capacitance, limited surface area, and low porosity, carbon yarn failed to be directly exploited as a free-standing or current collector-less electrode for flexible supercapacitor applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100724"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452262724001181/pdfft?md5=fa459ea952209fb845c2be489f14eafa&pid=1-s2.0-S2452262724001181-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing charge storage capacity of cellulose-sweat-based electrolyte flexible supercapacitors with electrochemically exfoliated free-standing carbon yarn electrodes\",\"authors\":\"Amjid Rafique , Isabel Ferreira , Nenad Bundaleski , O.M.N.D. Teodoro , Ana C. Baptista\",\"doi\":\"10.1016/j.flatc.2024.100724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) provides an interface between different electronic devices such as flexible electronics, and e-textiles to capture and receive real-time data and help humans to devise systems that will adequately respond to these environmental stimuli. The main limitations of these devices to work 24/7 are the lack of continuous power supply and easy integration into textiles to perform their functions. The other issues are poor adhesion of active materials with substrates and peeling-off of active material from the electrode substrates and consequently, degradation of electrochemical performance. A potential and evolving strategy is fabricating a current collector-less and integrable carbon yarn-based energy storage device. Herein, we are presenting a facile and novel technique to exfoliate carbon yarn fibers to enhance their electrochemical performance by 3 orders of magnitude. Activated carbon yarn wires acting as current collector-less electrodes along with cellulose acetate-based composite separators offer a large surface area to simulated sweat electrolyte ions and show a gravimetric capacitance of 11.28 Fg<sup>−1</sup> at the scan rate of 5 mVs<sup>−1</sup>. Activated carbon yarn-based symmetric supercapacitor device in a simulated sweat solution electrolyte offers excellent cyclic and bending stability with over 95 % capacitance retention in both tests.</p></div><div><h3>Theoretical insight</h3><p>Supercapacitors (SCs) comprise many active and passive elements. The most passive and vital elements are current collectors, separators, binders, electrolytes, and packaging. Two key elements, current collector and binders can be eliminated by developing current collector-free or free-standing electrodes. Carbonaceous materials such as graphene <span><span>[1]</span></span>, <span><span>[2]</span></span>, carbon nanotubes (CNT) <span><span>[3]</span></span>, porous carbon <span><span>[2]</span></span>, and carbon onions<span><span>[4]</span></span>, <span><span>[5]</span></span> are common alternatives of active materials for SCs electrodes owing to their low cost, chemical stability, large surface area, and high electrical conductivity. These active materials show exceptional attributes such as long cyclic life, and high-rate capability owing to their intrinsic operation mechanism e.g., surface charge storage due to large surface area. However, they also suffer from low specific capacitance ascribed to low surface area exposed to electrolyte ions and low charge storage due to poor wettability. The most efficient technique to address this problem is to incorporate doped heteroatoms or surface functional groups such as surface oxygen groups present on the surface of carbon yarn. The inclusion of these doped heteroatoms and functional groups boosts the intrinsic properties, such as electrical conductivity, and wettability. The increased electro-active surface area offers more active sites for electrolyte ions, resulting in more charge storage and higher pseudocapacitance <span><span>[6]</span></span>, <span><span>[7]</span></span>, <span><span>[8]</span></span>.</p><p>Carbon yarn comprised of long-chain carbon filaments of 2.5–5 µm in radius, excellent conductivity, high chemical and mechanical stability, and light weightiness make it a potential candidate as an active material or a free-standing electrode for SCs. However, due to its low specific capacitance, limited surface area, and low porosity, carbon yarn failed to be directly exploited as a free-standing or current collector-less electrode for flexible supercapacitor applications.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100724\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001181/pdfft?md5=fa459ea952209fb845c2be489f14eafa&pid=1-s2.0-S2452262724001181-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001181\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001181","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhancing charge storage capacity of cellulose-sweat-based electrolyte flexible supercapacitors with electrochemically exfoliated free-standing carbon yarn electrodes
The Internet of Things (IoT) provides an interface between different electronic devices such as flexible electronics, and e-textiles to capture and receive real-time data and help humans to devise systems that will adequately respond to these environmental stimuli. The main limitations of these devices to work 24/7 are the lack of continuous power supply and easy integration into textiles to perform their functions. The other issues are poor adhesion of active materials with substrates and peeling-off of active material from the electrode substrates and consequently, degradation of electrochemical performance. A potential and evolving strategy is fabricating a current collector-less and integrable carbon yarn-based energy storage device. Herein, we are presenting a facile and novel technique to exfoliate carbon yarn fibers to enhance their electrochemical performance by 3 orders of magnitude. Activated carbon yarn wires acting as current collector-less electrodes along with cellulose acetate-based composite separators offer a large surface area to simulated sweat electrolyte ions and show a gravimetric capacitance of 11.28 Fg−1 at the scan rate of 5 mVs−1. Activated carbon yarn-based symmetric supercapacitor device in a simulated sweat solution electrolyte offers excellent cyclic and bending stability with over 95 % capacitance retention in both tests.
Theoretical insight
Supercapacitors (SCs) comprise many active and passive elements. The most passive and vital elements are current collectors, separators, binders, electrolytes, and packaging. Two key elements, current collector and binders can be eliminated by developing current collector-free or free-standing electrodes. Carbonaceous materials such as graphene [1], [2], carbon nanotubes (CNT) [3], porous carbon [2], and carbon onions[4], [5] are common alternatives of active materials for SCs electrodes owing to their low cost, chemical stability, large surface area, and high electrical conductivity. These active materials show exceptional attributes such as long cyclic life, and high-rate capability owing to their intrinsic operation mechanism e.g., surface charge storage due to large surface area. However, they also suffer from low specific capacitance ascribed to low surface area exposed to electrolyte ions and low charge storage due to poor wettability. The most efficient technique to address this problem is to incorporate doped heteroatoms or surface functional groups such as surface oxygen groups present on the surface of carbon yarn. The inclusion of these doped heteroatoms and functional groups boosts the intrinsic properties, such as electrical conductivity, and wettability. The increased electro-active surface area offers more active sites for electrolyte ions, resulting in more charge storage and higher pseudocapacitance [6], [7], [8].
Carbon yarn comprised of long-chain carbon filaments of 2.5–5 µm in radius, excellent conductivity, high chemical and mechanical stability, and light weightiness make it a potential candidate as an active material or a free-standing electrode for SCs. However, due to its low specific capacitance, limited surface area, and low porosity, carbon yarn failed to be directly exploited as a free-standing or current collector-less electrode for flexible supercapacitor applications.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)