{"title":"量子弗罗贝尼斯分裂和簇结构","authors":"Jinfeng Song","doi":"10.1007/s10468-024-10281-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the duals of the quantum Frobenius morphisms and their splittings by Lusztig are compatible with quantum cluster monomials. After specialization, we deduce that the canonical Frobenius splittings on flag varieties are compatible with cluster algebra structures on Schubert cells.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 5","pages":"1773 - 1797"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Frobenius Splittings and Cluster Structures\",\"authors\":\"Jinfeng Song\",\"doi\":\"10.1007/s10468-024-10281-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the duals of the quantum Frobenius morphisms and their splittings by Lusztig are compatible with quantum cluster monomials. After specialization, we deduce that the canonical Frobenius splittings on flag varieties are compatible with cluster algebra structures on Schubert cells.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 5\",\"pages\":\"1773 - 1797\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10281-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10281-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantum Frobenius Splittings and Cluster Structures
We prove that the duals of the quantum Frobenius morphisms and their splittings by Lusztig are compatible with quantum cluster monomials. After specialization, we deduce that the canonical Frobenius splittings on flag varieties are compatible with cluster algebra structures on Schubert cells.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.