基于 GO-MnO2 改性电极的对乙酰氨基酚灵敏而选择性的电化学检测

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
V. Anbumannan, K. Suresh
{"title":"基于 GO-MnO2 改性电极的对乙酰氨基酚灵敏而选择性的电化学检测","authors":"V. Anbumannan, K. Suresh","doi":"10.1007/s42823-024-00787-1","DOIUrl":null,"url":null,"abstract":"<p>This article describes an efficient electrochemical sensor based on a graphene oxide- manganese dioxide (GO-MnO<sub>2</sub>) nanocomposite for detecting acetaminophen (AAP) in human fluids. The MnO<sub>2</sub>-wrapped GO sensing element was prepared by a simple and environmentally friendly co-precipitation method. The prepared GO-MnO<sub>2</sub> nanostructure was characterized for its structural, morphological, and functional properties and tested for AAP detection. At a pH of 3, the electrochemical results revealed a high redox process toward AAP due to the transfer of two electrons and protons between the GO-MnO<sub>2</sub>/glassy carbon electrode (GO-MnO<sub>2</sub>/GCE) and AAP. The differential pulse voltammetry (DPV) analytical results showed the precise sensing ability of AAP in a wide linear range [0.125–2000 µM] with superior anti-interference ability. The calculated sensitivity of the GO-MnO<sub>2</sub>/GCE was 17.04 µAµM<sup>−1</sup> cm<sup>−2</sup>, and the detection limit (LOD) was 7.042 nM. The sensor exhibited high reliability, good reproducibility, and a good recovery range of 98.47–99.22% in human urine sample analysis.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"12 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive and selective electrochemical detection of acetaminophen based on GO-MnO2-modified electrode\",\"authors\":\"V. Anbumannan, K. Suresh\",\"doi\":\"10.1007/s42823-024-00787-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article describes an efficient electrochemical sensor based on a graphene oxide- manganese dioxide (GO-MnO<sub>2</sub>) nanocomposite for detecting acetaminophen (AAP) in human fluids. The MnO<sub>2</sub>-wrapped GO sensing element was prepared by a simple and environmentally friendly co-precipitation method. The prepared GO-MnO<sub>2</sub> nanostructure was characterized for its structural, morphological, and functional properties and tested for AAP detection. At a pH of 3, the electrochemical results revealed a high redox process toward AAP due to the transfer of two electrons and protons between the GO-MnO<sub>2</sub>/glassy carbon electrode (GO-MnO<sub>2</sub>/GCE) and AAP. The differential pulse voltammetry (DPV) analytical results showed the precise sensing ability of AAP in a wide linear range [0.125–2000 µM] with superior anti-interference ability. The calculated sensitivity of the GO-MnO<sub>2</sub>/GCE was 17.04 µAµM<sup>−1</sup> cm<sup>−2</sup>, and the detection limit (LOD) was 7.042 nM. The sensor exhibited high reliability, good reproducibility, and a good recovery range of 98.47–99.22% in human urine sample analysis.</p>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42823-024-00787-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00787-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于氧化石墨烯-二氧化锰(GO-MnO2)纳米复合材料的高效电化学传感器,用于检测人体液中的对乙酰氨基酚(AAP)。二氧化锰包裹的 GO 传感元件是通过一种简单、环保的共沉淀方法制备的。对制备的 GO-MnO2 纳米结构的结构、形态和功能特性进行了表征,并对其进行了对乙酰氨基酚检测测试。在 pH 值为 3 的条件下,电化学结果表明,GO-MnO2/玻璃碳电极(GO-MnO2/GCE)与 AAP 之间由于两个电子和质子的转移,对 AAP 产生了高氧化还原过程。差分脉冲伏安法(DPV)的分析结果表明,该方法能在较宽的线性范围[0.125-2000 µM]内精确地感测磷酸氢二铵,并具有卓越的抗干扰能力。经计算,GO-MnO2/GCE 的灵敏度为 17.04 µAµM-1 cm-2,检测限(LOD)为 7.042 nM。该传感器可靠性高、重现性好,在人体尿样分析中的回收率范围为 98.47%-99.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensitive and selective electrochemical detection of acetaminophen based on GO-MnO2-modified electrode

Sensitive and selective electrochemical detection of acetaminophen based on GO-MnO2-modified electrode

This article describes an efficient electrochemical sensor based on a graphene oxide- manganese dioxide (GO-MnO2) nanocomposite for detecting acetaminophen (AAP) in human fluids. The MnO2-wrapped GO sensing element was prepared by a simple and environmentally friendly co-precipitation method. The prepared GO-MnO2 nanostructure was characterized for its structural, morphological, and functional properties and tested for AAP detection. At a pH of 3, the electrochemical results revealed a high redox process toward AAP due to the transfer of two electrons and protons between the GO-MnO2/glassy carbon electrode (GO-MnO2/GCE) and AAP. The differential pulse voltammetry (DPV) analytical results showed the precise sensing ability of AAP in a wide linear range [0.125–2000 µM] with superior anti-interference ability. The calculated sensitivity of the GO-MnO2/GCE was 17.04 µAµM−1 cm−2, and the detection limit (LOD) was 7.042 nM. The sensor exhibited high reliability, good reproducibility, and a good recovery range of 98.47–99.22% in human urine sample analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信