农用工业废物(香蕉皮)的利用:利用 PCA 方法对可生物降解复合罐进行开发、表征和分类

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Khalid Bashir, Shumaila Jan, Mehvish Habib, D. C. Saxena, Ayon Tarafdar, Raveendra Sindhu, Vinay Kumar, Kulsum Jan
{"title":"农用工业废物(香蕉皮)的利用:利用 PCA 方法对可生物降解复合罐进行开发、表征和分类","authors":"Khalid Bashir, Shumaila Jan, Mehvish Habib, D. C. Saxena, Ayon Tarafdar, Raveendra Sindhu, Vinay Kumar, Kulsum Jan","doi":"10.1007/s13399-024-06014-1","DOIUrl":null,"url":null,"abstract":"<p>Traditional plastic contributes significantly to environmental pollution due to their non-biodegradable nature, while banana peels, a common agro-industrial waste, are often discarded without proper utilization. The research envisages to develop an eco-friendly solution by creating biodegradable composite pots from banana peels. Banana peel powder and deoiled rice bran plasticized by cashew nut shell liquid and glycerol into pellets. Pellets were molded into pots using injection molding at suitable temperature and pressure. Processing resulted in significant changes in physical properties of the pot and raw materials. CNSL and biopolymers demonstrated strong physical interaction during the construction of a 3D network of pots. The novelty of the work lies in its innovative integration of waste management and sustainable product development. By employing principal component analysis (PCA) for characterization and classification, the research introduces a sophisticated analytical method to evaluate the properties and performance of the composite material. The pots made from 12% CNSL exhibited better mechanical and physical properties in comparison to pots made from glycerol. However, water binding capacity, porosity, and water solubility index (WSI) were higher in pots containing glycerol. SEM analysis evidenced a homogeneous and smoother surface in pots with CNSL. Pots with 12% GL and 12% CNSL degraded in 17 and 15 weeks, respectively. The study not only advances the application of banana peels in the development of sustainable products but also sets a precedent for the systematic analysis and optimization of biodegradable materials.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"139 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of agro-industrial wastes (banana peel): development, characterization, and classification of biodegradable composite pots using PCA approach\",\"authors\":\"Khalid Bashir, Shumaila Jan, Mehvish Habib, D. C. Saxena, Ayon Tarafdar, Raveendra Sindhu, Vinay Kumar, Kulsum Jan\",\"doi\":\"10.1007/s13399-024-06014-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional plastic contributes significantly to environmental pollution due to their non-biodegradable nature, while banana peels, a common agro-industrial waste, are often discarded without proper utilization. The research envisages to develop an eco-friendly solution by creating biodegradable composite pots from banana peels. Banana peel powder and deoiled rice bran plasticized by cashew nut shell liquid and glycerol into pellets. Pellets were molded into pots using injection molding at suitable temperature and pressure. Processing resulted in significant changes in physical properties of the pot and raw materials. CNSL and biopolymers demonstrated strong physical interaction during the construction of a 3D network of pots. The novelty of the work lies in its innovative integration of waste management and sustainable product development. By employing principal component analysis (PCA) for characterization and classification, the research introduces a sophisticated analytical method to evaluate the properties and performance of the composite material. The pots made from 12% CNSL exhibited better mechanical and physical properties in comparison to pots made from glycerol. However, water binding capacity, porosity, and water solubility index (WSI) were higher in pots containing glycerol. SEM analysis evidenced a homogeneous and smoother surface in pots with CNSL. Pots with 12% GL and 12% CNSL degraded in 17 and 15 weeks, respectively. The study not only advances the application of banana peels in the development of sustainable products but also sets a precedent for the systematic analysis and optimization of biodegradable materials.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06014-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06014-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

传统塑料由于其不可生物降解的特性,极大地加剧了环境污染,而香蕉皮作为一种常见的农用工业废物,常常被丢弃而得不到适当利用。这项研究旨在开发一种生态友好型解决方案,利用香蕉皮制作可生物降解的复合罐。香蕉皮粉末和去油米糠经腰果壳液和甘油塑化成颗粒。在适当的温度和压力下,用注射成型法将颗粒模塑成花盆。加工过程使罐子和原材料的物理性质发生了显著变化。中链氯化石蜡和生物聚合物在构建三维锅网络的过程中表现出强烈的物理相互作用。这项工作的创新之处在于将废物管理和可持续产品开发创新性地结合在一起。通过采用主成分分析(PCA)进行表征和分类,该研究引入了一种复杂的分析方法来评估复合材料的特性和性能。与用甘油制成的花盆相比,用 12% 的氯化石蜡制成的花盆具有更好的机械和物理性能。不过,含甘油的花盆的水结合能力、孔隙率和水溶性指数(WSI)更高。扫描电镜分析表明,含有 CNSL 的花盆表面更均匀、更光滑。含有 12% GL 和 12% CNSL 的花盆分别在 17 周和 15 周内降解。这项研究不仅推动了香蕉皮在可持续产品开发中的应用,还为生物降解材料的系统分析和优化开创了先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilization of agro-industrial wastes (banana peel): development, characterization, and classification of biodegradable composite pots using PCA approach

Utilization of agro-industrial wastes (banana peel): development, characterization, and classification of biodegradable composite pots using PCA approach

Traditional plastic contributes significantly to environmental pollution due to their non-biodegradable nature, while banana peels, a common agro-industrial waste, are often discarded without proper utilization. The research envisages to develop an eco-friendly solution by creating biodegradable composite pots from banana peels. Banana peel powder and deoiled rice bran plasticized by cashew nut shell liquid and glycerol into pellets. Pellets were molded into pots using injection molding at suitable temperature and pressure. Processing resulted in significant changes in physical properties of the pot and raw materials. CNSL and biopolymers demonstrated strong physical interaction during the construction of a 3D network of pots. The novelty of the work lies in its innovative integration of waste management and sustainable product development. By employing principal component analysis (PCA) for characterization and classification, the research introduces a sophisticated analytical method to evaluate the properties and performance of the composite material. The pots made from 12% CNSL exhibited better mechanical and physical properties in comparison to pots made from glycerol. However, water binding capacity, porosity, and water solubility index (WSI) were higher in pots containing glycerol. SEM analysis evidenced a homogeneous and smoother surface in pots with CNSL. Pots with 12% GL and 12% CNSL degraded in 17 and 15 weeks, respectively. The study not only advances the application of banana peels in the development of sustainable products but also sets a precedent for the systematic analysis and optimization of biodegradable materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信