Ponmani Subramanian, Kannan Pandian, Sangavi Pakkiyam, Krishna veni Dhanuskodi, Sivasankar Annamalai, Prabu Padanillay Chidambaram, Mohamed Roshan Abu Firnass Mustaffa
{"title":"生物炭用于净化土壤和水中的重金属:综述","authors":"Ponmani Subramanian, Kannan Pandian, Sangavi Pakkiyam, Krishna veni Dhanuskodi, Sivasankar Annamalai, Prabu Padanillay Chidambaram, Mohamed Roshan Abu Firnass Mustaffa","doi":"10.1007/s13399-024-05989-1","DOIUrl":null,"url":null,"abstract":"<p>The increasing trend of heavy metals in soil and aquatic ecosystems, driven by urbanization and industrialization advancements, has raised environmental concerns. While various remediation methods exist, they often lack scalability and sustainability. Biochar has emerged as a promising solution due to its eco-friendly nature and multifunctional properties. In particular, engineered biochar, modified to enhance its surface area and functional groups, exhibits superior performance in heavy metal adsorption. Biochar’s diverse morpho-physicochemical features, such as increased surface area and cation exchange capacity, facilitate heavy metal adsorption through various processes. The choice of feedstock materials and modification methods significantly influences biochar’s sorption capacity. Numerous reviews address the toxicity and treatment methods for heavy metals in soil and water. This study aims to advance the research by identifying key challenges and offering insights into engineered biochar production, characteristics, and applications for heavy metal cleanup in soil and water ecosystems. By exploring biochar potential with suitable interventions, we can develop sustainable solutions to mitigate metal toxicity and protect environmental and public health. Further research is necessary to overcome limitations and challenges, addressing research gaps and future directions in utilizing biochar as an eco-friendly, cost-effective technology for heavy metal remediation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar for heavy metal cleanup in soil and water: a review\",\"authors\":\"Ponmani Subramanian, Kannan Pandian, Sangavi Pakkiyam, Krishna veni Dhanuskodi, Sivasankar Annamalai, Prabu Padanillay Chidambaram, Mohamed Roshan Abu Firnass Mustaffa\",\"doi\":\"10.1007/s13399-024-05989-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing trend of heavy metals in soil and aquatic ecosystems, driven by urbanization and industrialization advancements, has raised environmental concerns. While various remediation methods exist, they often lack scalability and sustainability. Biochar has emerged as a promising solution due to its eco-friendly nature and multifunctional properties. In particular, engineered biochar, modified to enhance its surface area and functional groups, exhibits superior performance in heavy metal adsorption. Biochar’s diverse morpho-physicochemical features, such as increased surface area and cation exchange capacity, facilitate heavy metal adsorption through various processes. The choice of feedstock materials and modification methods significantly influences biochar’s sorption capacity. Numerous reviews address the toxicity and treatment methods for heavy metals in soil and water. This study aims to advance the research by identifying key challenges and offering insights into engineered biochar production, characteristics, and applications for heavy metal cleanup in soil and water ecosystems. By exploring biochar potential with suitable interventions, we can develop sustainable solutions to mitigate metal toxicity and protect environmental and public health. Further research is necessary to overcome limitations and challenges, addressing research gaps and future directions in utilizing biochar as an eco-friendly, cost-effective technology for heavy metal remediation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-05989-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-05989-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Biochar for heavy metal cleanup in soil and water: a review
The increasing trend of heavy metals in soil and aquatic ecosystems, driven by urbanization and industrialization advancements, has raised environmental concerns. While various remediation methods exist, they often lack scalability and sustainability. Biochar has emerged as a promising solution due to its eco-friendly nature and multifunctional properties. In particular, engineered biochar, modified to enhance its surface area and functional groups, exhibits superior performance in heavy metal adsorption. Biochar’s diverse morpho-physicochemical features, such as increased surface area and cation exchange capacity, facilitate heavy metal adsorption through various processes. The choice of feedstock materials and modification methods significantly influences biochar’s sorption capacity. Numerous reviews address the toxicity and treatment methods for heavy metals in soil and water. This study aims to advance the research by identifying key challenges and offering insights into engineered biochar production, characteristics, and applications for heavy metal cleanup in soil and water ecosystems. By exploring biochar potential with suitable interventions, we can develop sustainable solutions to mitigate metal toxicity and protect environmental and public health. Further research is necessary to overcome limitations and challenges, addressing research gaps and future directions in utilizing biochar as an eco-friendly, cost-effective technology for heavy metal remediation.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.