{"title":"小球藻 BRE5 采用半连续培养策略提高生物量和脂质产量的性能评估","authors":"Nisha Das, Diptymayee Padhi, Shovon Mandal, Vinod Kumar, Manoranjan Nayak","doi":"10.1007/s13399-024-06015-0","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to evaluate the potential of indigenous microalga, <i>Chlorella sorokiniana</i> BRE5, for enhanced biomass production by implementing a semi-continuous cultivation strategy (SCCS). The varied start replacement points (SRP) for SCCS were evaluated under optimized renewal rate (RR) and renewal period (RP) for enhanced lipid production. The replaced culture of <i>C. sorokiniana</i> BRE5 with RP of both 2d and 3d with RR of 25% showed an elevated trend in biomass yield. The maximum yield in total biomass and total lipid of 7.27 g L<sup>−1</sup> and 1.66 g L<sup>−1</sup>, respectively, was observed with SRP9 (9th day as SRP) at RP of 2d and RR of 25%. Semi-continuous cultivation with SRP9 shows 4.35 and 3.69 times higher in total biomass and lipid yield, respectively, than batch cultivation mode. The fatty acid methyl ester (FAME) composition of <i>C. sorokiniana</i> BRE5 primarily consists of C16:0 (palmitic acid) and C18:1 (oleic acid). The fuel characteristics like high heating value, better oxidative stability, and cetane number met international standards indicating its potential as a biodiesel feedstock. The optimization of SRP in semi-continuous cultivation under optimum RR and RP can be a suitable strategy for biomass and biodiesel production of microalgae.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of Chlorella sp. BRE5 for augmented biomass and lipid production implementing semi-continuous cultivation strategy\",\"authors\":\"Nisha Das, Diptymayee Padhi, Shovon Mandal, Vinod Kumar, Manoranjan Nayak\",\"doi\":\"10.1007/s13399-024-06015-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to evaluate the potential of indigenous microalga, <i>Chlorella sorokiniana</i> BRE5, for enhanced biomass production by implementing a semi-continuous cultivation strategy (SCCS). The varied start replacement points (SRP) for SCCS were evaluated under optimized renewal rate (RR) and renewal period (RP) for enhanced lipid production. The replaced culture of <i>C. sorokiniana</i> BRE5 with RP of both 2d and 3d with RR of 25% showed an elevated trend in biomass yield. The maximum yield in total biomass and total lipid of 7.27 g L<sup>−1</sup> and 1.66 g L<sup>−1</sup>, respectively, was observed with SRP9 (9th day as SRP) at RP of 2d and RR of 25%. Semi-continuous cultivation with SRP9 shows 4.35 and 3.69 times higher in total biomass and lipid yield, respectively, than batch cultivation mode. The fatty acid methyl ester (FAME) composition of <i>C. sorokiniana</i> BRE5 primarily consists of C16:0 (palmitic acid) and C18:1 (oleic acid). The fuel characteristics like high heating value, better oxidative stability, and cetane number met international standards indicating its potential as a biodiesel feedstock. The optimization of SRP in semi-continuous cultivation under optimum RR and RP can be a suitable strategy for biomass and biodiesel production of microalgae.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06015-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06015-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在通过实施半连续培养策略(SCCS),评估本地微藻小球藻(Chlorella sorokiniana BRE5)提高生物量生产的潜力。在优化更新率(RR)和更新周期(RP)的条件下,对 SCCS 的不同起始替换点(SRP)进行了评估,以提高脂质产量。RP 为 2d 和 3d 且 RR 为 25% 的 C. sorokiniana BRE5 替换培养物的生物量产量呈上升趋势。在 SRP9(第 9 天为 SRP)条件下,RP 为 2d,RR 为 25%,总生物量和总脂质的最高产量分别为 7.27 g L-1 和 1.66 g L-1。使用 SRP9 进行半连续培养的总生物量和脂质产量分别是间歇培养模式的 4.35 倍和 3.69 倍。C. sorokiniana BRE5 的脂肪酸甲酯(FAME)组成主要包括 C16:0(棕榈酸)和 C18:1(油酸)。其燃料特性,如较高的热值、较好的氧化稳定性和十六烷值均符合国际标准,表明其具有作为生物柴油原料的潜力。在最佳 RR 和 RP 条件下进行半连续培养,优化 SRP 是微藻生物质和生物柴油生产的合适策略。
Performance evaluation of Chlorella sp. BRE5 for augmented biomass and lipid production implementing semi-continuous cultivation strategy
This study aimed to evaluate the potential of indigenous microalga, Chlorella sorokiniana BRE5, for enhanced biomass production by implementing a semi-continuous cultivation strategy (SCCS). The varied start replacement points (SRP) for SCCS were evaluated under optimized renewal rate (RR) and renewal period (RP) for enhanced lipid production. The replaced culture of C. sorokiniana BRE5 with RP of both 2d and 3d with RR of 25% showed an elevated trend in biomass yield. The maximum yield in total biomass and total lipid of 7.27 g L−1 and 1.66 g L−1, respectively, was observed with SRP9 (9th day as SRP) at RP of 2d and RR of 25%. Semi-continuous cultivation with SRP9 shows 4.35 and 3.69 times higher in total biomass and lipid yield, respectively, than batch cultivation mode. The fatty acid methyl ester (FAME) composition of C. sorokiniana BRE5 primarily consists of C16:0 (palmitic acid) and C18:1 (oleic acid). The fuel characteristics like high heating value, better oxidative stability, and cetane number met international standards indicating its potential as a biodiesel feedstock. The optimization of SRP in semi-continuous cultivation under optimum RR and RP can be a suitable strategy for biomass and biodiesel production of microalgae.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.