氮化铝缓冲层厚度对 In0.17Al0.83N/GaN 高电子迁移率晶体管电子和电气特性的影响

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Abdelmalek Douara, Abdelaziz Rabehi, Mawloud Guermoui, Rania Daha, Imad Eddine Tibermacine
{"title":"氮化铝缓冲层厚度对 In0.17Al0.83N/GaN 高电子迁移率晶体管电子和电气特性的影响","authors":"Abdelmalek Douara,&nbsp;Abdelaziz Rabehi,&nbsp;Mawloud Guermoui,&nbsp;Rania Daha,&nbsp;Imad Eddine Tibermacine","doi":"10.1134/S1063783424600766","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we delved into the intricacies of In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN high-electron-mobility transistors (HEMTs) using a comprehensive simulation model and by Leveraging the capabilities of Nextnano simulation software. We extensively explored how different thicknesses of the AlN buffer layer impact electronic and electrical properties. Our study was centered on scrutinizing the density and mobility of the two-dimensional electron gas (2-DEG) within the In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN HEMT structure. Aiming to understand how different AlN buffer layer thicknesses impact device performance. Our findings unveil a crucial relationship between AlN buffer layer thickness and critical performance metrics. Specifically, we observed significant trends in output current and transconductance, shedding light on the direct influence of AlN thickness on device behavior. Our simulations identified an optimal AlN thickness of 350 nm, demonstrating the highest output current and surpassing a transconductance peak of 510 mS/mm. Importantly, our computational predictions closely align with experimental observations, validating the reliability and accuracy of our simulation model. Through this meticulous analysis, we contribute valuable insights that can guide the design and optimization of In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN HEMT, paving the way for improved device performance and functionality across various electronic applications. Our study underscores the importance of considering AlN buffer layer thickness in designing and engineering high-performance HEMTs, highlighting avenues for future research and development in semiconductor device technology.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of AlN Buffer Layer Thickness on Electronic and Electrical Characteristics of In0.17Al0.83N/GaN High-Electron-Mobility Transistor\",\"authors\":\"Abdelmalek Douara,&nbsp;Abdelaziz Rabehi,&nbsp;Mawloud Guermoui,&nbsp;Rania Daha,&nbsp;Imad Eddine Tibermacine\",\"doi\":\"10.1134/S1063783424600766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we delved into the intricacies of In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN high-electron-mobility transistors (HEMTs) using a comprehensive simulation model and by Leveraging the capabilities of Nextnano simulation software. We extensively explored how different thicknesses of the AlN buffer layer impact electronic and electrical properties. Our study was centered on scrutinizing the density and mobility of the two-dimensional electron gas (2-DEG) within the In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN HEMT structure. Aiming to understand how different AlN buffer layer thicknesses impact device performance. Our findings unveil a crucial relationship between AlN buffer layer thickness and critical performance metrics. Specifically, we observed significant trends in output current and transconductance, shedding light on the direct influence of AlN thickness on device behavior. Our simulations identified an optimal AlN thickness of 350 nm, demonstrating the highest output current and surpassing a transconductance peak of 510 mS/mm. Importantly, our computational predictions closely align with experimental observations, validating the reliability and accuracy of our simulation model. Through this meticulous analysis, we contribute valuable insights that can guide the design and optimization of In<sub>0.17</sub>Al<sub>0.83</sub>N/GaN HEMT, paving the way for improved device performance and functionality across various electronic applications. Our study underscores the importance of considering AlN buffer layer thickness in designing and engineering high-performance HEMTs, highlighting avenues for future research and development in semiconductor device technology.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424600766\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424600766","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们利用综合仿真模型和 Nextnano 仿真软件的功能,深入研究了 In0.17Al0.83N/GaN 高电子迁移率晶体管 (HEMT) 的复杂性。我们广泛探讨了不同厚度的 AlN 缓冲层对电子和电气性能的影响。我们的研究重点是仔细观察 In0.17Al0.83N/GaN HEMT 结构中二维电子气体 (2-DEG) 的密度和迁移率。目的是了解不同的 AlN 缓冲层厚度对器件性能的影响。我们的研究结果揭示了氮化铝缓冲层厚度与关键性能指标之间的重要关系。具体来说,我们观察到输出电流和跨导的显著变化趋势,揭示了氮化铝厚度对器件行为的直接影响。我们的模拟确定了 350 nm 的最佳 AlN 厚度,该厚度显示了最高的输出电流,并超过了 510 mS/mm 的跨导峰值。重要的是,我们的计算预测与实验观察结果非常吻合,验证了我们模拟模型的可靠性和准确性。通过这种细致的分析,我们提出了宝贵的见解,可以指导 In0.17Al0.83N/GaN HEMT 的设计和优化,为提高各种电子应用的器件性能和功能铺平道路。我们的研究强调了在设计和制造高性能 HEMT 时考虑 AlN 缓冲层厚度的重要性,为半导体器件技术的未来研究和发展指明了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of AlN Buffer Layer Thickness on Electronic and Electrical Characteristics of In0.17Al0.83N/GaN High-Electron-Mobility Transistor

Impact of AlN Buffer Layer Thickness on Electronic and Electrical Characteristics of In0.17Al0.83N/GaN High-Electron-Mobility Transistor

Impact of AlN Buffer Layer Thickness on Electronic and Electrical Characteristics of In0.17Al0.83N/GaN High-Electron-Mobility Transistor

In this paper, we delved into the intricacies of In0.17Al0.83N/GaN high-electron-mobility transistors (HEMTs) using a comprehensive simulation model and by Leveraging the capabilities of Nextnano simulation software. We extensively explored how different thicknesses of the AlN buffer layer impact electronic and electrical properties. Our study was centered on scrutinizing the density and mobility of the two-dimensional electron gas (2-DEG) within the In0.17Al0.83N/GaN HEMT structure. Aiming to understand how different AlN buffer layer thicknesses impact device performance. Our findings unveil a crucial relationship between AlN buffer layer thickness and critical performance metrics. Specifically, we observed significant trends in output current and transconductance, shedding light on the direct influence of AlN thickness on device behavior. Our simulations identified an optimal AlN thickness of 350 nm, demonstrating the highest output current and surpassing a transconductance peak of 510 mS/mm. Importantly, our computational predictions closely align with experimental observations, validating the reliability and accuracy of our simulation model. Through this meticulous analysis, we contribute valuable insights that can guide the design and optimization of In0.17Al0.83N/GaN HEMT, paving the way for improved device performance and functionality across various electronic applications. Our study underscores the importance of considering AlN buffer layer thickness in designing and engineering high-performance HEMTs, highlighting avenues for future research and development in semiconductor device technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信