碳微球杂化 CuFe2O4 提高电荷存储特性,用于高能量密度固态混合超级电容器

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
{"title":"碳微球杂化 CuFe2O4 提高电荷存储特性,用于高能量密度固态混合超级电容器","authors":"","doi":"10.1016/j.mtsust.2024.100950","DOIUrl":null,"url":null,"abstract":"<div><p>The hybrid nanocomposite of Copper Ferrite/Carbon sphere (CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC) has been synthesized and their combined electrochemical activity for supercapacitors is achieved. XRD study reveals the average crystallite size of CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC as 112 nm. CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC provides a huge specific surface area of 532 m<sup>2</sup>/g. Cyclic voltammetry (CV) analysis exhibits the competitive specific capacity of CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC as 320 C/g at the sweep rate of 10 mV/s. The galvanostatic charge-discharge (GCD) study shows a good specific capacity of 264 C/g at 1 A/g and excellent cyclic stability of 82.4% for 5000 cycles. The CuFe<sub>2</sub>O<sub>4</sub>/C-sphere//AC solid-state hybrid supercapacitor provides a high specific capacity of 131 C/g along with remarkable energy density and power density of 40.9 Wh/kg and 11248 W/kg respectively.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridization of CuFe2O4 by carbon microspheres with improved charge storage characteristics for high energy density solid-state hybrid supercapacitor\",\"authors\":\"\",\"doi\":\"10.1016/j.mtsust.2024.100950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hybrid nanocomposite of Copper Ferrite/Carbon sphere (CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC) has been synthesized and their combined electrochemical activity for supercapacitors is achieved. XRD study reveals the average crystallite size of CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC as 112 nm. CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC provides a huge specific surface area of 532 m<sup>2</sup>/g. Cyclic voltammetry (CV) analysis exhibits the competitive specific capacity of CuFe<sub>2</sub>O<sub>4</sub>/C-sphere NC as 320 C/g at the sweep rate of 10 mV/s. The galvanostatic charge-discharge (GCD) study shows a good specific capacity of 264 C/g at 1 A/g and excellent cyclic stability of 82.4% for 5000 cycles. The CuFe<sub>2</sub>O<sub>4</sub>/C-sphere//AC solid-state hybrid supercapacitor provides a high specific capacity of 131 C/g along with remarkable energy density and power density of 40.9 Wh/kg and 11248 W/kg respectively.</p></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724002860\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724002860","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们合成了铜铁氧体/碳球(CuFeO/C-sphere NC)的混合纳米复合材料,并实现了它们在超级电容器中的组合电化学活性。XRD 研究显示 CuFeO/C-sphere NC 的平均结晶尺寸为 112 nm。CuFeO/C-sphere NC 具有 532 m/g 的巨大比表面积。循环伏安法(CV)分析表明,在 10 mV/s 的扫描速率下,CuFeO/C-球状 NC 的竞争比容量为 320 C/g。电静态充放电(GCD)研究表明,在 1 A/g 时,比容量为 264 C/g,循环稳定性极佳,5000 次循环的比容量为 82.4%。CuFeO/C-sphere//AC 固态混合超级电容器的比容量高达 131 C/g,能量密度和功率密度分别为 40.9 Wh/kg 和 11248 W/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybridization of CuFe2O4 by carbon microspheres with improved charge storage characteristics for high energy density solid-state hybrid supercapacitor

Hybridization of CuFe2O4 by carbon microspheres with improved charge storage characteristics for high energy density solid-state hybrid supercapacitor

The hybrid nanocomposite of Copper Ferrite/Carbon sphere (CuFe2O4/C-sphere NC) has been synthesized and their combined electrochemical activity for supercapacitors is achieved. XRD study reveals the average crystallite size of CuFe2O4/C-sphere NC as 112 nm. CuFe2O4/C-sphere NC provides a huge specific surface area of 532 m2/g. Cyclic voltammetry (CV) analysis exhibits the competitive specific capacity of CuFe2O4/C-sphere NC as 320 C/g at the sweep rate of 10 mV/s. The galvanostatic charge-discharge (GCD) study shows a good specific capacity of 264 C/g at 1 A/g and excellent cyclic stability of 82.4% for 5000 cycles. The CuFe2O4/C-sphere//AC solid-state hybrid supercapacitor provides a high specific capacity of 131 C/g along with remarkable energy density and power density of 40.9 Wh/kg and 11248 W/kg respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信