浮点系数多项式的快速求值和求根

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Rémi Imbach , Guillaume Moroz
{"title":"浮点系数多项式的快速求值和求根","authors":"Rémi Imbach ,&nbsp;Guillaume Moroz","doi":"10.1016/j.jsc.2024.102372","DOIUrl":null,"url":null,"abstract":"<div><p>Evaluating or finding the roots of a polynomial <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with floating-point number coefficients is a ubiquitous problem. By using a piecewise approximation of <em>f</em> obtained with a careful use of the Newton polygon of <em>f</em>, we improve state-of-the-art upper bounds on the number of operations to evaluate and find the roots of a polynomial. In particular, if the coefficients of <em>f</em> are given with <em>m</em> significant bits, we provide for the first time an algorithm that finds all the roots of <em>f</em> with a relative condition number lower than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, using a number of bit operations quasi-linear in the bit-size of the floating-point representation of <em>f</em>. Notably, our new approach handles efficiently polynomials with coefficients ranging from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup></math></span> to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msup></math></span>, both in theory and in practice.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast evaluation and root finding for polynomials with floating-point coefficients\",\"authors\":\"Rémi Imbach ,&nbsp;Guillaume Moroz\",\"doi\":\"10.1016/j.jsc.2024.102372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Evaluating or finding the roots of a polynomial <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with floating-point number coefficients is a ubiquitous problem. By using a piecewise approximation of <em>f</em> obtained with a careful use of the Newton polygon of <em>f</em>, we improve state-of-the-art upper bounds on the number of operations to evaluate and find the roots of a polynomial. In particular, if the coefficients of <em>f</em> are given with <em>m</em> significant bits, we provide for the first time an algorithm that finds all the roots of <em>f</em> with a relative condition number lower than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, using a number of bit operations quasi-linear in the bit-size of the floating-point representation of <em>f</em>. Notably, our new approach handles efficiently polynomials with coefficients ranging from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup></math></span> to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msup></math></span>, both in theory and in practice.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000762\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000762","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

求值或查找具有浮点数系数的多项式的根是一个无处不在的问题。通过使用牛顿多边形的片断近似值,我们改进了最先进的多项式求值和求根的运算次数上限。特别是,如果多项式的系数是用有效位给出的,我们首次提供了一种算法,它能找到相对条件数小于 ,的所有根,而且比特运算次数与多项式浮点表示的比特大小呈准线性关系。 值得注意的是,我们的新方法在理论和实践中都能高效处理系数范围从 到 的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast evaluation and root finding for polynomials with floating-point coefficients

Evaluating or finding the roots of a polynomial f(z)=f0++fdzd with floating-point number coefficients is a ubiquitous problem. By using a piecewise approximation of f obtained with a careful use of the Newton polygon of f, we improve state-of-the-art upper bounds on the number of operations to evaluate and find the roots of a polynomial. In particular, if the coefficients of f are given with m significant bits, we provide for the first time an algorithm that finds all the roots of f with a relative condition number lower than 2m, using a number of bit operations quasi-linear in the bit-size of the floating-point representation of f. Notably, our new approach handles efficiently polynomials with coefficients ranging from 2d to 2d, both in theory and in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信