矢量双曲函数的进一步研究

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiaxin Wang;Fang-Wei Fu;Yadi Wei;Jing Yang
{"title":"矢量双曲函数的进一步研究","authors":"Jiaxin Wang;Fang-Wei Fu;Yadi Wei;Jing Yang","doi":"10.1109/TIT.2024.3439375","DOIUrl":null,"url":null,"abstract":"Vectorial dual-bent functions have recently attracted some researchers’ interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions, and linear codes. In this paper, we further study vectorial dual-bent functions \n<inline-formula> <tex-math>$F: V_{n}^{(p)}\\rightarrow V_{m}^{(p)}$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$2\\leq m \\leq \\frac {n}{2}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$V_{n}^{(p)}$ </tex-math></inline-formula>\n denotes an n-dimensional vector space over the prime field \n<inline-formula> <tex-math>$\\mathbb {F}_{p}$ </tex-math></inline-formula>\n. For certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A), we present a more concise characterization in terms of partial difference sets than the one given in Wang et al. (2023), and give new characterizations in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices, respectively. When \n<inline-formula> <tex-math>$p=2$ </tex-math></inline-formula>\n, we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Through the relationship between vectorial dual-bent functions and bent partitions, new characterizations of certain bent partitions in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices are obtained. For a vectorial dual-bent function \n<inline-formula> <tex-math>$F: V_{n}^{(p)}\\rightarrow V_{m}^{(p)}$ </tex-math></inline-formula>\n with \n<inline-formula> <tex-math>$F(0)=0, F(x)=F(-x)$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$2\\leq m \\leq \\frac {n}{2}$ </tex-math></inline-formula>\n, we give a necessary and sufficient condition under which the preimage set partition of F induces an association scheme. By using two classes of vectorial dual-bent functions, more association schemes are obtained.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"7472-7483"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Further Study of Vectorial Dual-Bent Functions\",\"authors\":\"Jiaxin Wang;Fang-Wei Fu;Yadi Wei;Jing Yang\",\"doi\":\"10.1109/TIT.2024.3439375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vectorial dual-bent functions have recently attracted some researchers’ interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions, and linear codes. In this paper, we further study vectorial dual-bent functions \\n<inline-formula> <tex-math>$F: V_{n}^{(p)}\\\\rightarrow V_{m}^{(p)}$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$2\\\\leq m \\\\leq \\\\frac {n}{2}$ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$V_{n}^{(p)}$ </tex-math></inline-formula>\\n denotes an n-dimensional vector space over the prime field \\n<inline-formula> <tex-math>$\\\\mathbb {F}_{p}$ </tex-math></inline-formula>\\n. For certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A), we present a more concise characterization in terms of partial difference sets than the one given in Wang et al. (2023), and give new characterizations in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices, respectively. When \\n<inline-formula> <tex-math>$p=2$ </tex-math></inline-formula>\\n, we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Through the relationship between vectorial dual-bent functions and bent partitions, new characterizations of certain bent partitions in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices are obtained. For a vectorial dual-bent function \\n<inline-formula> <tex-math>$F: V_{n}^{(p)}\\\\rightarrow V_{m}^{(p)}$ </tex-math></inline-formula>\\n with \\n<inline-formula> <tex-math>$F(0)=0, F(x)=F(-x)$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$2\\\\leq m \\\\leq \\\\frac {n}{2}$ </tex-math></inline-formula>\\n, we give a necessary and sufficient condition under which the preimage set partition of F induces an association scheme. By using two classes of vectorial dual-bent functions, more association schemes are obtained.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 10\",\"pages\":\"7472-7483\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623778/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623778/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

矢量对偶弯曲函数最近引起了一些研究者的兴趣,因为它们在构造偏差集、关联方案、弯曲分区和线性编码中发挥了重要作用。本文将进一步研究矢量对偶弯曲函数 $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ ,其中 $2\leq m \leq \frac {n}{2}$ ,$V_{n}^{(p)}$ 表示素域 $\mathbb {F}_{p}$ 上的 n 维矢量空间。对于某些向量对偶弯曲函数(称为带条件 A 的向量对偶弯曲函数),我们用偏差集给出了比 Wang 等人(2023)中给出的更简洁的表征,并分别用非定态关联方案、线性编码和广义哈达玛矩阵给出了新的表征。当 $p=2$ 时,我们用弯曲分区来描述条件 A 的矢量对偶弯曲函数。通过向量双弯曲函数和弯曲分区之间的关系,我们得到了某些弯曲分区在非定态关联方案、线性编码和广义哈达玛矩阵方面的新特征。对于向量对偶弯曲函数 $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$,$F(0)=0, F(x)=F(-x)$ ,其中$2\leq m \leq\frac{n}{2}$,我们给出了 F 的前像集分区诱导关联方案的必要条件和充分条件。通过使用两类向量对偶弯曲函数,我们得到了更多的关联方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Further Study of Vectorial Dual-Bent Functions
Vectorial dual-bent functions have recently attracted some researchers’ interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions, and linear codes. In this paper, we further study vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ , where $2\leq m \leq \frac {n}{2}$ , and $V_{n}^{(p)}$ denotes an n-dimensional vector space over the prime field $\mathbb {F}_{p}$ . For certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A), we present a more concise characterization in terms of partial difference sets than the one given in Wang et al. (2023), and give new characterizations in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices, respectively. When $p=2$ , we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Through the relationship between vectorial dual-bent functions and bent partitions, new characterizations of certain bent partitions in terms of amorphic association schemes, linear codes, and generalized Hadamard matrices are obtained. For a vectorial dual-bent function $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ with $F(0)=0, F(x)=F(-x)$ , where $2\leq m \leq \frac {n}{2}$ , we give a necessary and sufficient condition under which the preimage set partition of F induces an association scheme. By using two classes of vectorial dual-bent functions, more association schemes are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信