因子模型下的动态均值-方差投资组合选择

IF 1.9 3区 经济学 Q2 ECONOMICS
Yun Shi , Lingjie Kong , Lanzhi Yang , Duan Li , Xiangyu Cui
{"title":"因子模型下的动态均值-方差投资组合选择","authors":"Yun Shi ,&nbsp;Lingjie Kong ,&nbsp;Lanzhi Yang ,&nbsp;Duan Li ,&nbsp;Xiangyu Cui","doi":"10.1016/j.jedc.2024.104923","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing insights from financial literature and empirical financial data, we introduce a comprehensive system of factor models designed to capture both return and risk dynamics. Our focus extends to addressing the multi-period mean-variance portfolio selection challenge within the framework of these proposed factor models. Through rigorous analysis, we formulate a semi-analytical optimal portfolio policy, characterized by a linear relationship with the current wealth level. The coefficients of this optimal policy are intricately linked to a specific stochastic process known as the future investment opportunity (FIO), reflecting the investor's anticipation of future investment prospects. Furthermore, empirical examination within the U.S. market context underscores the efficacy of our approach. By incorporating the factor models for return and risk, our optimal portfolio policy exhibits superior out-of-sample Sharpe ratio compared to benchmark policies.</p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic mean-variance portfolio selection under factor models\",\"authors\":\"Yun Shi ,&nbsp;Lingjie Kong ,&nbsp;Lanzhi Yang ,&nbsp;Duan Li ,&nbsp;Xiangyu Cui\",\"doi\":\"10.1016/j.jedc.2024.104923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Utilizing insights from financial literature and empirical financial data, we introduce a comprehensive system of factor models designed to capture both return and risk dynamics. Our focus extends to addressing the multi-period mean-variance portfolio selection challenge within the framework of these proposed factor models. Through rigorous analysis, we formulate a semi-analytical optimal portfolio policy, characterized by a linear relationship with the current wealth level. The coefficients of this optimal policy are intricately linked to a specific stochastic process known as the future investment opportunity (FIO), reflecting the investor's anticipation of future investment prospects. Furthermore, empirical examination within the U.S. market context underscores the efficacy of our approach. By incorporating the factor models for return and risk, our optimal portfolio policy exhibits superior out-of-sample Sharpe ratio compared to benchmark policies.</p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924001155\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924001155","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

利用从金融文献和实证金融数据中获得的启示,我们引入了一套全面的因子模型系统,旨在捕捉收益和风险动态。我们的重点是在这些因子模型的框架内解决多期均值-方差投资组合选择的难题。通过严谨的分析,我们提出了一个半解析的最优投资组合政策,其特点是与当前财富水平呈线性关系。这一最优政策的系数与一个被称为未来投资机会(FIO)的特定随机过程密切相关,反映了投资者对未来投资前景的预期。此外,在美国市场背景下进行的实证研究也凸显了我们方法的有效性。通过纳入收益和风险因子模型,与基准政策相比,我们的最优投资组合政策表现出更优越的样本外夏普比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic mean-variance portfolio selection under factor models

Utilizing insights from financial literature and empirical financial data, we introduce a comprehensive system of factor models designed to capture both return and risk dynamics. Our focus extends to addressing the multi-period mean-variance portfolio selection challenge within the framework of these proposed factor models. Through rigorous analysis, we formulate a semi-analytical optimal portfolio policy, characterized by a linear relationship with the current wealth level. The coefficients of this optimal policy are intricately linked to a specific stochastic process known as the future investment opportunity (FIO), reflecting the investor's anticipation of future investment prospects. Furthermore, empirical examination within the U.S. market context underscores the efficacy of our approach. By incorporating the factor models for return and risk, our optimal portfolio policy exhibits superior out-of-sample Sharpe ratio compared to benchmark policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信