用于培训露天采矿重型设备操作员的增强现实系统

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juan David Valencia Quiceno, Vladislav Kecojevic, Amy McBrayer, Dragan Bogunovic
{"title":"用于培训露天采矿重型设备操作员的增强现实系统","authors":"Juan David Valencia Quiceno, Vladislav Kecojevic, Amy McBrayer, Dragan Bogunovic","doi":"10.1007/s42461-024-01047-6","DOIUrl":null,"url":null,"abstract":"<p>United States federal laws mandate that mining companies ensure a safe workplace, implement approved training programs, and promptly report work-related injuries. The mining industry’s commitment to innovation reflects a history of adopting technological advancements to enhance environmental sustainability, workplace safety, and vocational training. The objective of this research was to develop an augmented reality (AR) system for heavy equipment operators (HEOs) in surface mining. The developed system has the potential to enhance mine safety, training, and data-driven decision-making, which presents a significant step toward a more sustainable, effective, and technologically driven mining training, contributing to the industry’s evolution and growth. The AR Training System leverages Microsoft’s Power Platform and HoloLens 2 capacities to provide operators with detailed, immersive training guides for three mining equipment including bulldozers, motor graders, and end dump trucks. These AR guides combine 3D objects, informative images, and videos to enhance learning and safety. The system also provides an efficient approach to data collection during HEO training, having the potential to modify the training guides based on user performance. The system was developed and applied via a case study in a surface mine in the southern United States.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Reality System for Training of Heavy Equipment Operators in Surface Mining\",\"authors\":\"Juan David Valencia Quiceno, Vladislav Kecojevic, Amy McBrayer, Dragan Bogunovic\",\"doi\":\"10.1007/s42461-024-01047-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>United States federal laws mandate that mining companies ensure a safe workplace, implement approved training programs, and promptly report work-related injuries. The mining industry’s commitment to innovation reflects a history of adopting technological advancements to enhance environmental sustainability, workplace safety, and vocational training. The objective of this research was to develop an augmented reality (AR) system for heavy equipment operators (HEOs) in surface mining. The developed system has the potential to enhance mine safety, training, and data-driven decision-making, which presents a significant step toward a more sustainable, effective, and technologically driven mining training, contributing to the industry’s evolution and growth. The AR Training System leverages Microsoft’s Power Platform and HoloLens 2 capacities to provide operators with detailed, immersive training guides for three mining equipment including bulldozers, motor graders, and end dump trucks. These AR guides combine 3D objects, informative images, and videos to enhance learning and safety. The system also provides an efficient approach to data collection during HEO training, having the potential to modify the training guides based on user performance. The system was developed and applied via a case study in a surface mine in the southern United States.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01047-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01047-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

美国联邦法律规定,矿业公司必须确保工作场所安全,实施经批准的培训计划,并及时报告工伤事故。采矿业对创新的承诺反映了其采用先进技术提高环境可持续性、工作场所安全和职业培训的历史。本研究的目的是为露天采矿业的重型设备操作员(HEOs)开发一个增强现实(AR)系统。所开发的系统具有加强矿山安全、培训和数据驱动决策的潜力,是向更可持续、更有效和技术驱动的采矿培训迈出的重要一步,有助于该行业的发展和增长。AR 培训系统利用微软的 Power Platform 和 HoloLens 2 功能,为操作员提供详细的沉浸式培训指南,适用于推土机、平地机和自卸卡车等三种采矿设备。这些 AR 指南结合了 3D 物体、信息图像和视频,以提高学习效果和安全性。该系统还提供了一种在 HEO 培训期间收集数据的有效方法,有可能根据用户表现修改培训指南。该系统是在美国南部的一个露天矿通过案例研究开发和应用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Augmented Reality System for Training of Heavy Equipment Operators in Surface Mining

Augmented Reality System for Training of Heavy Equipment Operators in Surface Mining

United States federal laws mandate that mining companies ensure a safe workplace, implement approved training programs, and promptly report work-related injuries. The mining industry’s commitment to innovation reflects a history of adopting technological advancements to enhance environmental sustainability, workplace safety, and vocational training. The objective of this research was to develop an augmented reality (AR) system for heavy equipment operators (HEOs) in surface mining. The developed system has the potential to enhance mine safety, training, and data-driven decision-making, which presents a significant step toward a more sustainable, effective, and technologically driven mining training, contributing to the industry’s evolution and growth. The AR Training System leverages Microsoft’s Power Platform and HoloLens 2 capacities to provide operators with detailed, immersive training guides for three mining equipment including bulldozers, motor graders, and end dump trucks. These AR guides combine 3D objects, informative images, and videos to enhance learning and safety. The system also provides an efficient approach to data collection during HEO training, having the potential to modify the training guides based on user performance. The system was developed and applied via a case study in a surface mine in the southern United States.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信