大板宽全机械化长壁工作面导水断裂带的高度发展特征

IF 1.5 4区 工程技术 Q3 METALLURGY & METALLURGICAL ENGINEERING
Han Fang, Shuyun Zhu, Shengjun Zhang
{"title":"大板宽全机械化长壁工作面导水断裂带的高度发展特征","authors":"Han Fang, Shuyun Zhu, Shengjun Zhang","doi":"10.1007/s42461-024-01049-4","DOIUrl":null,"url":null,"abstract":"<p>To explore the height development characteristics of a water-conducting fracture zone (WCFZ) in a working face with a large panel width, a typical working face with a panel width of 330 m was used as the research background for this study. The lower limit of the height of the WCFZ was preliminarily determined via borehole televiewer observation, and the maximum height of the WCFZ in the working face was further determined via numerical simulation and empirical analysis. The prediction results obtained via the traditional empirical formulas are unsuitable for working faces with large panel widths. For the studied working face, considering its actual geological background, the deformation and failure characteristics of the overlying rock under six different panel width conditions were simulated via numerical simulation, and it was found that the height of the WCFZ exhibits a good natural logarithmic relationship with the panel width. On the basis of the statistics of data collected from 58 cases of fully mechanized coal faces with normal panel widths in the North China-type coal field, the applicability of the logarithmic variation in the in situ data was analysed and compared. The accuracy of the logarithmic variation was verified by theoretical analysis, revealing that the internal factor controlling this variation is the decrease in the burial depth of the unfractured rock stratum. The case study with the panel width of the working face of 330 m extends the applicability of the abovementioned variation to panel widths greater than 300 m in North China-type coalfields, and 300 m was proposed as the threshold panel width at which the development of the WCFZ slows. This variation can provide a reference for safe mining and optimum panel width determination under high-intensity mining conditions.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Height Development Characteristics of Water-Conducting Fracture Zone in a Fully Mechanized Longwall Face with a Large Panel Width\",\"authors\":\"Han Fang, Shuyun Zhu, Shengjun Zhang\",\"doi\":\"10.1007/s42461-024-01049-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To explore the height development characteristics of a water-conducting fracture zone (WCFZ) in a working face with a large panel width, a typical working face with a panel width of 330 m was used as the research background for this study. The lower limit of the height of the WCFZ was preliminarily determined via borehole televiewer observation, and the maximum height of the WCFZ in the working face was further determined via numerical simulation and empirical analysis. The prediction results obtained via the traditional empirical formulas are unsuitable for working faces with large panel widths. For the studied working face, considering its actual geological background, the deformation and failure characteristics of the overlying rock under six different panel width conditions were simulated via numerical simulation, and it was found that the height of the WCFZ exhibits a good natural logarithmic relationship with the panel width. On the basis of the statistics of data collected from 58 cases of fully mechanized coal faces with normal panel widths in the North China-type coal field, the applicability of the logarithmic variation in the in situ data was analysed and compared. The accuracy of the logarithmic variation was verified by theoretical analysis, revealing that the internal factor controlling this variation is the decrease in the burial depth of the unfractured rock stratum. The case study with the panel width of the working face of 330 m extends the applicability of the abovementioned variation to panel widths greater than 300 m in North China-type coalfields, and 300 m was proposed as the threshold panel width at which the development of the WCFZ slows. This variation can provide a reference for safe mining and optimum panel width determination under high-intensity mining conditions.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01049-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01049-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了探索大板宽工作面导水断裂带(WCFZ)的高度发育特征,本研究以板宽330米的典型工作面为研究背景。通过钻孔遥视仪观测初步确定了 WCFZ 的下限高度,并通过数值模拟和经验分析进一步确定了工作面 WCFZ 的最大高度。通过传统经验公式得出的预测结果不适合板宽较大的工作面。针对所研究的工作面,结合其实际地质背景,通过数值模拟了六种不同面板宽度条件下的上覆岩石变形和破坏特征,发现 WCFZ 高度与面板宽度呈良好的自然对数关系。在对华北型煤田 58 个板宽正常的全机械化采煤工作面采集的数据进行统计的基础上,分析比较了对数变化在现场数据中的适用性。理论分析验证了对数变化的准确性,揭示了控制这种变化的内部因素是未破裂岩层埋深的减小。工作面面板宽度为 330 m 的案例研究将上述变化的适用范围扩大到华北型煤田大于 300 m 的面板宽度,并提出 300 m 为 WCFZ 发展减缓的临界面板宽度。这一变化可为高强度开采条件下的安全开采和最佳板宽确定提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Height Development Characteristics of Water-Conducting Fracture Zone in a Fully Mechanized Longwall Face with a Large Panel Width

Height Development Characteristics of Water-Conducting Fracture Zone in a Fully Mechanized Longwall Face with a Large Panel Width

To explore the height development characteristics of a water-conducting fracture zone (WCFZ) in a working face with a large panel width, a typical working face with a panel width of 330 m was used as the research background for this study. The lower limit of the height of the WCFZ was preliminarily determined via borehole televiewer observation, and the maximum height of the WCFZ in the working face was further determined via numerical simulation and empirical analysis. The prediction results obtained via the traditional empirical formulas are unsuitable for working faces with large panel widths. For the studied working face, considering its actual geological background, the deformation and failure characteristics of the overlying rock under six different panel width conditions were simulated via numerical simulation, and it was found that the height of the WCFZ exhibits a good natural logarithmic relationship with the panel width. On the basis of the statistics of data collected from 58 cases of fully mechanized coal faces with normal panel widths in the North China-type coal field, the applicability of the logarithmic variation in the in situ data was analysed and compared. The accuracy of the logarithmic variation was verified by theoretical analysis, revealing that the internal factor controlling this variation is the decrease in the burial depth of the unfractured rock stratum. The case study with the panel width of the working face of 330 m extends the applicability of the abovementioned variation to panel widths greater than 300 m in North China-type coalfields, and 300 m was proposed as the threshold panel width at which the development of the WCFZ slows. This variation can provide a reference for safe mining and optimum panel width determination under high-intensity mining conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining, Metallurgy & Exploration
Mining, Metallurgy & Exploration Materials Science-Materials Chemistry
CiteScore
3.50
自引率
10.50%
发文量
177
期刊介绍: The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society. The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信