Yuli Xiong, Nan Zhou, Yuting Zhou, Bo Peng, Yuting Cui, Peng Yu and Zhenxiang Cheng
{"title":"面向定向电荷转移的 BiVO4/Bi2Mo2O9 异质结构,用于高效光电化学水氧化","authors":"Yuli Xiong, Nan Zhou, Yuting Zhou, Bo Peng, Yuting Cui, Peng Yu and Zhenxiang Cheng","doi":"10.1039/D4SE00734D","DOIUrl":null,"url":null,"abstract":"<p >The sluggish transfer of photogenerated charges is an intrinsic problem in the photoelectrochemical (PEC) conversion of solar energy into chemical energy. Constructing nanostructured heterostructure photoelectrodes is one of the most effective strategies for achieving energetic charge transfer kinetics. Herein, we fabricate a type II heterostructure film of BiVO<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> for PEC water splitting using the successive ionic layer adsorption and reaction (SILAR) method. Owing to the work function difference of ∼230 mV between the two semiconductors, free electrons will flow from Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> to BiVO<small><sub>4</sub></small>, causing positive charges to accumulate on the Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> side and negative charges on the BiVO<small><sub>4</sub></small> side. This charge redistribution induces a built-in electric field pointing from Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> to BiVO<small><sub>4</sub></small>, facilitating the separation of photogenerated electrons and holes. Consequently, the corresponding photocurrent density in the BiVO<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> photoanode reaches 0.61 mA cm<small><sup>−2</sup></small>, which is 3.4 times that of bare Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> (0.18 mA cm<small><sup>−2</sup></small>) at 1.23 V <em>vs.</em> the Reversible Hydrogen Electrode (RHE). The interface charge interaction results in upward and downward band bending toward the interface for Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> and BiVO<small><sub>4</sub></small> and also leads to enhanced oxidation kinetics (70.1%) and high photovoltage (340 mV).</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 18","pages":" 4263-4271"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BiVO4/Bi2Mo2O9 heterostructure towards oriented charge transfer for efficient photoelectrochemical water oxidation†\",\"authors\":\"Yuli Xiong, Nan Zhou, Yuting Zhou, Bo Peng, Yuting Cui, Peng Yu and Zhenxiang Cheng\",\"doi\":\"10.1039/D4SE00734D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sluggish transfer of photogenerated charges is an intrinsic problem in the photoelectrochemical (PEC) conversion of solar energy into chemical energy. Constructing nanostructured heterostructure photoelectrodes is one of the most effective strategies for achieving energetic charge transfer kinetics. Herein, we fabricate a type II heterostructure film of BiVO<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> for PEC water splitting using the successive ionic layer adsorption and reaction (SILAR) method. Owing to the work function difference of ∼230 mV between the two semiconductors, free electrons will flow from Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> to BiVO<small><sub>4</sub></small>, causing positive charges to accumulate on the Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> side and negative charges on the BiVO<small><sub>4</sub></small> side. This charge redistribution induces a built-in electric field pointing from Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> to BiVO<small><sub>4</sub></small>, facilitating the separation of photogenerated electrons and holes. Consequently, the corresponding photocurrent density in the BiVO<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> photoanode reaches 0.61 mA cm<small><sup>−2</sup></small>, which is 3.4 times that of bare Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> (0.18 mA cm<small><sup>−2</sup></small>) at 1.23 V <em>vs.</em> the Reversible Hydrogen Electrode (RHE). The interface charge interaction results in upward and downward band bending toward the interface for Bi<small><sub>2</sub></small>Mo<small><sub>2</sub></small>O<small><sub>9</sub></small> and BiVO<small><sub>4</sub></small> and also leads to enhanced oxidation kinetics (70.1%) and high photovoltage (340 mV).</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 18\",\"pages\":\" 4263-4271\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00734d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00734d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
光生电荷转移缓慢是光电化学(PEC)将太阳能转化为化学能过程中的一个固有问题。构建纳米异质结构光电极是实现高能电荷转移动力学的最有效策略之一。在此,我们采用连续离子层吸附和反应(SILAR)方法,制备了用于 PEC 水分离的 BiVO4/Bi2Mo2O9 II 型异质结构薄膜。由于两种半导体之间存在 ∼230 mV 的功函数差,自由电子会从 Bi2Mo2O9 流向 BiVO4,导致正电荷在 Bi2Mo2O9 侧积累,而负电荷在 BiVO4 侧积累。这种电荷的重新分布产生了一个从 Bi2Mo2O9 指向 BiVO4 的内置电场,促进了光生电子和空穴的分离。因此,BiVO4/Bi2Mo2O9 光阳极中相应的光电流密度达到 0.61 mA cm-2,是裸 Bi2Mo2O9(0.18 mA cm-2)的 3.4 倍(1.23 V 时与可逆氢电极(RHE)相比)。界面电荷相互作用导致 Bi2Mo2O9 和 BiVO4 的带向界面上下弯曲,同时也增强了氧化动力学(70.1%)和高光电压(340 mV)。
A BiVO4/Bi2Mo2O9 heterostructure towards oriented charge transfer for efficient photoelectrochemical water oxidation†
The sluggish transfer of photogenerated charges is an intrinsic problem in the photoelectrochemical (PEC) conversion of solar energy into chemical energy. Constructing nanostructured heterostructure photoelectrodes is one of the most effective strategies for achieving energetic charge transfer kinetics. Herein, we fabricate a type II heterostructure film of BiVO4/Bi2Mo2O9 for PEC water splitting using the successive ionic layer adsorption and reaction (SILAR) method. Owing to the work function difference of ∼230 mV between the two semiconductors, free electrons will flow from Bi2Mo2O9 to BiVO4, causing positive charges to accumulate on the Bi2Mo2O9 side and negative charges on the BiVO4 side. This charge redistribution induces a built-in electric field pointing from Bi2Mo2O9 to BiVO4, facilitating the separation of photogenerated electrons and holes. Consequently, the corresponding photocurrent density in the BiVO4/Bi2Mo2O9 photoanode reaches 0.61 mA cm−2, which is 3.4 times that of bare Bi2Mo2O9 (0.18 mA cm−2) at 1.23 V vs. the Reversible Hydrogen Electrode (RHE). The interface charge interaction results in upward and downward band bending toward the interface for Bi2Mo2O9 and BiVO4 and also leads to enhanced oxidation kinetics (70.1%) and high photovoltage (340 mV).
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.