Bernardete Ribeiro, Francisco Antunes, Dylan Perdigão, Catarina Silva
{"title":"以高度不平衡数据集的学习和推理为目标的卷积尖峰神经网络","authors":"Bernardete Ribeiro, Francisco Antunes, Dylan Perdigão, Catarina Silva","doi":"10.1016/j.patrec.2024.08.002","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) are regarded as the next frontier in AI, as they can be implemented on neuromorphic hardware, paving the way for advancements in real-world applications in the field. SNNs provide a biologically inspired solution that is event-driven, energy-efficient and sparse. While showing promising results, there are challenges that need to be addressed. For example, the design-build-evaluate process for integrating the architecture, learning, hyperparameter optimization and inference need to be tailored to a specific problem. This is particularly important in critical high-stakes industries such as finance services. In this paper, we present SpikeConv, a novel deep Convolutional Spiking Neural Network (CSNN), and investigate this process in the context of a highly imbalanced online bank account opening fraud problem. Our approach is compared with Deep Spiking Neural Networks (DSNNs) and Gradient Boosting Decision Trees (GBDT) showing competitive results.","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"86 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Spiking Neural Networks targeting learning and inference in highly imbalanced datasets\",\"authors\":\"Bernardete Ribeiro, Francisco Antunes, Dylan Perdigão, Catarina Silva\",\"doi\":\"10.1016/j.patrec.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Networks (SNNs) are regarded as the next frontier in AI, as they can be implemented on neuromorphic hardware, paving the way for advancements in real-world applications in the field. SNNs provide a biologically inspired solution that is event-driven, energy-efficient and sparse. While showing promising results, there are challenges that need to be addressed. For example, the design-build-evaluate process for integrating the architecture, learning, hyperparameter optimization and inference need to be tailored to a specific problem. This is particularly important in critical high-stakes industries such as finance services. In this paper, we present SpikeConv, a novel deep Convolutional Spiking Neural Network (CSNN), and investigate this process in the context of a highly imbalanced online bank account opening fraud problem. Our approach is compared with Deep Spiking Neural Networks (DSNNs) and Gradient Boosting Decision Trees (GBDT) showing competitive results.\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patrec.2024.08.002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.patrec.2024.08.002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Convolutional Spiking Neural Networks targeting learning and inference in highly imbalanced datasets
Spiking Neural Networks (SNNs) are regarded as the next frontier in AI, as they can be implemented on neuromorphic hardware, paving the way for advancements in real-world applications in the field. SNNs provide a biologically inspired solution that is event-driven, energy-efficient and sparse. While showing promising results, there are challenges that need to be addressed. For example, the design-build-evaluate process for integrating the architecture, learning, hyperparameter optimization and inference need to be tailored to a specific problem. This is particularly important in critical high-stakes industries such as finance services. In this paper, we present SpikeConv, a novel deep Convolutional Spiking Neural Network (CSNN), and investigate this process in the context of a highly imbalanced online bank account opening fraud problem. Our approach is compared with Deep Spiking Neural Networks (DSNNs) and Gradient Boosting Decision Trees (GBDT) showing competitive results.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.