Alina Üffing, Oliver H. Weiergräber, Melanie Schwarten, Silke Hoffmann, Dieter Willbold
{"title":"hAtg8 蛋白 GABARAP 与表皮生长因子受体相互作用,支持其在受体迁移过程中发挥独特作用","authors":"Alina Üffing, Oliver H. Weiergräber, Melanie Schwarten, Silke Hoffmann, Dieter Willbold","doi":"10.1002/1873-3468.14997","DOIUrl":null,"url":null,"abstract":"The human Atg8 family member GABARAP is involved in numerous autophagy‐related and ‐unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3‐interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site <jats:italic>in silico</jats:italic>. Indeed, <jats:italic>in vitro</jats:italic> interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X‐ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hAtg8 protein GABARAP interacts with EGFR and supports its unique role during receptor trafficking\",\"authors\":\"Alina Üffing, Oliver H. Weiergräber, Melanie Schwarten, Silke Hoffmann, Dieter Willbold\",\"doi\":\"10.1002/1873-3468.14997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human Atg8 family member GABARAP is involved in numerous autophagy‐related and ‐unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3‐interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site <jats:italic>in silico</jats:italic>. Indeed, <jats:italic>in vitro</jats:italic> interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X‐ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.14997\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.14997","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The hAtg8 protein GABARAP interacts with EGFR and supports its unique role during receptor trafficking
The human Atg8 family member GABARAP is involved in numerous autophagy‐related and ‐unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3‐interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X‐ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.