Asmaa M. Elzayat, Katharina Landfester, Rafael Muñoz‐Espí
{"title":"利用反相纳米乳化技术封装亲水性物质的壳聚糖/二氧化硅杂化纳米凝胶","authors":"Asmaa M. Elzayat, Katharina Landfester, Rafael Muñoz‐Espí","doi":"10.1002/mame.202400151","DOIUrl":null,"url":null,"abstract":"A strategy for the preparation of a hybrid chitosan/silica nanohydrogel is reported, which combines the gelation of chitosan in a nanoemulsion system with a sol–gel process to produce silica. Chitosan is used as a biopolymer matrix, while silica acts as a structuring additive. Hydrogel nanocapsules are obtained through the ionic interaction of the cationic groups of chitosan with the anionic groups of sodium triphosphate (STP), which is used as a physical cross‐linker. Two alternative preparation methods are compared in this work: in the first one, STP is added to the continuous phase of an inverse emulsion of chitosan; in the second one, the fusion of droplets of two emulsions containing separate chitosan and STP takes place. The size of the obtained nanocapsules ranges from 50 to 200 nm. The efficiency of the formed hydrogel for entrapping a hydrophilic model substance (erioglaucine disodium salt) is investigated for the two systems by studying the release in a neutral aqueous medium. The results indicate that the hydrophilic cargo is efficiently encapsulated by both preparation methods, although the droplet‐fusion method yields more stable suspensions. As a general observation, the release behavior of erioglaucine is systematically retarded when silica is present in the systems.","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"47 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan/Silica Hybrid Nanogels by Inverse Nanoemulsion for Encapsulating Hydrophilic Substances\",\"authors\":\"Asmaa M. Elzayat, Katharina Landfester, Rafael Muñoz‐Espí\",\"doi\":\"10.1002/mame.202400151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A strategy for the preparation of a hybrid chitosan/silica nanohydrogel is reported, which combines the gelation of chitosan in a nanoemulsion system with a sol–gel process to produce silica. Chitosan is used as a biopolymer matrix, while silica acts as a structuring additive. Hydrogel nanocapsules are obtained through the ionic interaction of the cationic groups of chitosan with the anionic groups of sodium triphosphate (STP), which is used as a physical cross‐linker. Two alternative preparation methods are compared in this work: in the first one, STP is added to the continuous phase of an inverse emulsion of chitosan; in the second one, the fusion of droplets of two emulsions containing separate chitosan and STP takes place. The size of the obtained nanocapsules ranges from 50 to 200 nm. The efficiency of the formed hydrogel for entrapping a hydrophilic model substance (erioglaucine disodium salt) is investigated for the two systems by studying the release in a neutral aqueous medium. The results indicate that the hydrophilic cargo is efficiently encapsulated by both preparation methods, although the droplet‐fusion method yields more stable suspensions. As a general observation, the release behavior of erioglaucine is systematically retarded when silica is present in the systems.\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/mame.202400151\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mame.202400151","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chitosan/Silica Hybrid Nanogels by Inverse Nanoemulsion for Encapsulating Hydrophilic Substances
A strategy for the preparation of a hybrid chitosan/silica nanohydrogel is reported, which combines the gelation of chitosan in a nanoemulsion system with a sol–gel process to produce silica. Chitosan is used as a biopolymer matrix, while silica acts as a structuring additive. Hydrogel nanocapsules are obtained through the ionic interaction of the cationic groups of chitosan with the anionic groups of sodium triphosphate (STP), which is used as a physical cross‐linker. Two alternative preparation methods are compared in this work: in the first one, STP is added to the continuous phase of an inverse emulsion of chitosan; in the second one, the fusion of droplets of two emulsions containing separate chitosan and STP takes place. The size of the obtained nanocapsules ranges from 50 to 200 nm. The efficiency of the formed hydrogel for entrapping a hydrophilic model substance (erioglaucine disodium salt) is investigated for the two systems by studying the release in a neutral aqueous medium. The results indicate that the hydrophilic cargo is efficiently encapsulated by both preparation methods, although the droplet‐fusion method yields more stable suspensions. As a general observation, the release behavior of erioglaucine is systematically retarded when silica is present in the systems.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)