利用密度幂发散对序数响应模型进行稳健高效的估计

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Arijit Pyne, Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu
{"title":"利用密度幂发散对序数响应模型进行稳健高效的估计","authors":"Arijit Pyne, Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu","doi":"10.1080/02331888.2024.2347329","DOIUrl":null,"url":null,"abstract":" In real life, we frequently encounter ordinal variables depending upon independent covariates. The latent linear regression model is useful for modelling such data. One can find the model's parame...","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"83 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and efficient estimation in ordinal response models using the density power divergence\",\"authors\":\"Arijit Pyne, Subhrajyoty Roy, Abhik Ghosh, Ayanendranath Basu\",\"doi\":\"10.1080/02331888.2024.2347329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" In real life, we frequently encounter ordinal variables depending upon independent covariates. The latent linear regression model is useful for modelling such data. One can find the model's parame...\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2024.2347329\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2024.2347329","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在现实生活中,我们经常会遇到取决于独立协变量的序变量。潜在线性回归模型对此类数据建模非常有用。我们可以发现该模型的参数...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and efficient estimation in ordinal response models using the density power divergence
 In real life, we frequently encounter ordinal variables depending upon independent covariates. The latent linear regression model is useful for modelling such data. One can find the model's parame...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics
Statistics 数学-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
59
审稿时长
12 months
期刊介绍: Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信