当地脱氧雪腐镰刀菌烯醇污染调查及其多重肠道毒性评估

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Toxins Pub Date : 2024-08-12 DOI:10.3390/toxins16080353
Yebo Wang, Minjie Zhang, Ke Li, Chune Zhang, Honglei Tian, Ying Luo
{"title":"当地脱氧雪腐镰刀菌烯醇污染调查及其多重肠道毒性评估","authors":"Yebo Wang, Minjie Zhang, Ke Li, Chune Zhang, Honglei Tian, Ying Luo","doi":"10.3390/toxins16080353","DOIUrl":null,"url":null,"abstract":"Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC−J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.","PeriodicalId":23119,"journal":{"name":"Toxins","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Deoxynivalenol Contamination in Local Area and Evaluation of Its Multiple Intestinal Toxicity\",\"authors\":\"Yebo Wang, Minjie Zhang, Ke Li, Chune Zhang, Honglei Tian, Ying Luo\",\"doi\":\"10.3390/toxins16080353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC−J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins16080353\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16080353","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脱氧雪腐镰刀菌烯醇(DON)是一种由镰刀菌产生的霉菌毒素,广泛存在于小麦、玉米、大麦和其他粮食作物中,对人类和动物健康具有潜在毒性,尤其是小肠,因为小肠是抵御毒素入侵的主要靶器官。本研究首先调查了中国小麦产区局部地区的 DON 污染情况。结果表明,接触 DON 会降低 IPEC-J2 细胞的活力和抗氧化能力,刺激促炎因子的分泌和表达,破坏肠道微生物群,影响机体的正常功能。这说明 DON 可通过结构损伤、功能损伤甚至肠道内环境紊乱诱发肠道损伤,而且这些肠道毒性效应之间存在内在联系。这项研究可为治疗 DON 引起的肠道损伤提供多方面的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Deoxynivalenol Contamination in Local Area and Evaluation of Its Multiple Intestinal Toxicity
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC−J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信