{"title":"尼基申定理和通过马辛凯维奇空间的因式分解","authors":"Mieczysław Mastyło, Enrique Sánchez Pérez","doi":"10.1090/proc/16888","DOIUrl":null,"url":null,"abstract":"<p>Consider <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space of all equivalence classes of measurable functions on a finite measure space equipped with the topology of convergence in measure. Inspired by Nikishin’s classical result on the factorization of sublinear continuous operators from a Banach space to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove a theorem that characterizes those maps from any quasi-metric space into <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 0\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that factor strongly through Marcinkiewicz weighted spaces. We show applications to sublinear operators on a certain class of quasi-Banach spaces with generalized Rademacher type generated by Orlicz sequence spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nikishin’s theorem and factorization through Marcinkiewicz spaces\",\"authors\":\"Mieczysław Mastyło, Enrique Sánchez Pérez\",\"doi\":\"10.1090/proc/16888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 0\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space of all equivalence classes of measurable functions on a finite measure space equipped with the topology of convergence in measure. Inspired by Nikishin’s classical result on the factorization of sublinear continuous operators from a Banach space to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 0\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we prove a theorem that characterizes those maps from any quasi-metric space into <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript 0\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that factor strongly through Marcinkiewicz weighted spaces. We show applications to sublinear operators on a certain class of quasi-Banach spaces with generalized Rademacher type generated by Orlicz sequence spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
L 0 L^0 是有限度量空间上可测函数的所有等价类的 F F 空间,具有度量收敛拓扑。受尼基申关于从巴纳赫空间到 L 0 L^0 的亚线性连续算子因子化的经典结果的启发,我们证明了一个定理,它描述了从任何准度量空间到 L 0 L^0 的映射的特征,这些映射通过 Marcinkiewicz 加权空间强因子化。我们展示了对某类由奥利奇序列空间生成的广义拉德马赫型准巴纳赫空间上的亚线性算子的应用。
Nikishin’s theorem and factorization through Marcinkiewicz spaces
Consider L0L^0, the FF-space of all equivalence classes of measurable functions on a finite measure space equipped with the topology of convergence in measure. Inspired by Nikishin’s classical result on the factorization of sublinear continuous operators from a Banach space to L0L^0, we prove a theorem that characterizes those maps from any quasi-metric space into L0L^0 that factor strongly through Marcinkiewicz weighted spaces. We show applications to sublinear operators on a certain class of quasi-Banach spaces with generalized Rademacher type generated by Orlicz sequence spaces.