{"title":"𝐸_{7,3}型例外群上爱森斯坦数列的𝑝-adic极限","authors":"Hidenori Katsurada, Henry Kim","doi":"10.1090/proc/16866","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript 7 comma 3\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_{7,3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts is an ordinary modular form for a congruence subgroup.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝑝-adic limit of the Eisenstein series on the exceptional group of type 𝐸_{7,3}\",\"authors\":\"Hidenori Katsurada, Henry Kim\",\"doi\":\"10.1090/proc/16866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript 7 comma 3\\\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">E_{7,3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts is an ordinary modular form for a congruence subgroup.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16866\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了在类型为 E 7 , 3 E_{7,3} 的卓越群作用的卓越域上,爱森斯坦级数族的 p p -adic 极限是一个全等子群的普通模态。
𝑝-adic limit of the Eisenstein series on the exceptional group of type 𝐸_{7,3}
In this paper, we show that the pp-adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type E7,3E_{7,3} acts is an ordinary modular form for a congruence subgroup.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.