𝐸_{7,3}型例外群上爱森斯坦数列的𝑝-adic极限

Pub Date : 2024-03-29 DOI:10.1090/proc/16866
Hidenori Katsurada, Henry Kim
{"title":"𝐸_{7,3}型例外群上爱森斯坦数列的𝑝-adic极限","authors":"Hidenori Katsurada, Henry Kim","doi":"10.1090/proc/16866","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E Subscript 7 comma 3\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_{7,3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts is an ordinary modular form for a congruence subgroup.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝑝-adic limit of the Eisenstein series on the exceptional group of type 𝐸_{7,3}\",\"authors\":\"Hidenori Katsurada, Henry Kim\",\"doi\":\"10.1090/proc/16866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E Subscript 7 comma 3\\\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mrow> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">E_{7,3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts is an ordinary modular form for a congruence subgroup.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在类型为 E 7 , 3 E_{7,3} 的卓越群作用的卓越域上,爱森斯坦级数族的 p p -adic 极限是一个全等子群的普通模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
𝑝-adic limit of the Eisenstein series on the exceptional group of type 𝐸_{7,3}

In this paper, we show that the p p -adic limit of a family of Eisenstein series on the exceptional domain where the exceptional group of type E 7 , 3 E_{7,3} acts is an ordinary modular form for a congruence subgroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信