确定性化学反应网络的实时计算和稳健记忆

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Willem Fletcher, Titus H. Klinge, James I. Lathrop, Dawn A. Nye, Matthew Rayman
{"title":"确定性化学反应网络的实时计算和稳健记忆","authors":"Willem Fletcher, Titus H. Klinge, James I. Lathrop, Dawn A. Nye, Matthew Rayman","doi":"10.1007/s11047-024-09994-1","DOIUrl":null,"url":null,"abstract":"<p>Recent research into analog computing has introduced new notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz defined a notion of computing real numbers in real-time with chemical reaction networks (CRNs), introducing the classes <span>\\(\\mathbb {R}_\\text {LCRN}\\)</span> (the class of all Lyapunov CRN-computable real numbers) and <span>\\(\\mathbb {R}_\\text {RTCRN}\\)</span> (the class of all real-time CRN-computable numbers). In their paper, they show the inclusion of the real algebraic numbers <span>\\(\\text { ALG} \\subseteq \\mathbb {R}_\\text {LCRN}\\subseteq \\mathbb {R}_\\text {RTCRN}\\)</span> and that <span>\\(\\text { ALG} \\subsetneqq \\mathbb {R}_\\text {RTCRN}\\)</span> but leave open whether the inclusion is proper. In this paper, we resolve this open problem and show that <span>\\({ ALG} = \\mathbb {R}_\\text {LCRN}\\)</span> and, as a consequence, <span>\\(\\mathbb {R}_\\text {LCRN}\\subsetneqq \\mathbb {R}_\\text {RTCRN}\\)</span>. However, the definition of real-time computation by Huang et al. is fragile in the sense that it is sensitive to perturbations in initial conditions. To resolve this flaw, we further require a CRN to withstand these perturbations. In doing so, we arrive at a discrete model of memory. This approach has several benefits. First, a bounded CRN may compute values approximately in finite time. Second, a CRN can tolerate small perturbations of its species’ concentrations. Third, taking a measurement of a CRN’s state only requires precision proportional to the exactness of these approximations. Lastly, if a CRN requires only finite memory, this model and Turing machines are equivalent under real-time simulations.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time computing and robust memory with deterministic chemical reaction networks\",\"authors\":\"Willem Fletcher, Titus H. Klinge, James I. Lathrop, Dawn A. Nye, Matthew Rayman\",\"doi\":\"10.1007/s11047-024-09994-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent research into analog computing has introduced new notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz defined a notion of computing real numbers in real-time with chemical reaction networks (CRNs), introducing the classes <span>\\\\(\\\\mathbb {R}_\\\\text {LCRN}\\\\)</span> (the class of all Lyapunov CRN-computable real numbers) and <span>\\\\(\\\\mathbb {R}_\\\\text {RTCRN}\\\\)</span> (the class of all real-time CRN-computable numbers). In their paper, they show the inclusion of the real algebraic numbers <span>\\\\(\\\\text { ALG} \\\\subseteq \\\\mathbb {R}_\\\\text {LCRN}\\\\subseteq \\\\mathbb {R}_\\\\text {RTCRN}\\\\)</span> and that <span>\\\\(\\\\text { ALG} \\\\subsetneqq \\\\mathbb {R}_\\\\text {RTCRN}\\\\)</span> but leave open whether the inclusion is proper. In this paper, we resolve this open problem and show that <span>\\\\({ ALG} = \\\\mathbb {R}_\\\\text {LCRN}\\\\)</span> and, as a consequence, <span>\\\\(\\\\mathbb {R}_\\\\text {LCRN}\\\\subsetneqq \\\\mathbb {R}_\\\\text {RTCRN}\\\\)</span>. However, the definition of real-time computation by Huang et al. is fragile in the sense that it is sensitive to perturbations in initial conditions. To resolve this flaw, we further require a CRN to withstand these perturbations. In doing so, we arrive at a discrete model of memory. This approach has several benefits. First, a bounded CRN may compute values approximately in finite time. Second, a CRN can tolerate small perturbations of its species’ concentrations. Third, taking a measurement of a CRN’s state only requires precision proportional to the exactness of these approximations. Lastly, if a CRN requires only finite memory, this model and Turing machines are equivalent under real-time simulations.</p>\",\"PeriodicalId\":49783,\"journal\":{\"name\":\"Natural Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11047-024-09994-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-024-09994-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近的模拟计算研究引入了计算实数的新概念。Huang、Klinge、Lathrop、Li 和 Lutz 利用化学反应网络(CRN)定义了实时计算实数的概念,引入了类\(\mathbb {R}_\text {LCRN}\)(所有 Lyapunov CRN 可计算实数的类)和\(\mathbb {R}_\text {RTCRN}\)(所有实时 CRN 可计算数的类)。在他们的论文中,他们展示了包含实代数数(\text { ALG}\)和(\text { ALG} \subsetneq \mathbb {R}_text {RTCRN}),但是这个包含是否恰当还没有定论。在本文中,我们解决了这个悬而未决的问题,并证明了\({ ALG} = \mathbb {R}_\text {LCRN}/),以及作为结果的\(\mathbb {R}_\text {LCRN}\subsetneqq \mathbb {R}_\text {RTCRN}/)。然而,Huang 等人对实时计算的定义很脆弱,因为它对初始条件的扰动很敏感。为了解决这一缺陷,我们进一步要求 CRN 能够承受这些扰动。这样,我们就得到了一个离散的内存模型。这种方法有几个好处。首先,有界 CRN 可以在有限时间内近似计算数值。其次,有界 CRN 可以承受其物种浓度的微小扰动。第三,测量有源 CRN 的状态只需要与这些近似值的精确度成比例的精度。最后,如果 CRN 只需要有限的内存,那么这个模型和图灵机在实时模拟下是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-time computing and robust memory with deterministic chemical reaction networks

Real-time computing and robust memory with deterministic chemical reaction networks

Recent research into analog computing has introduced new notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz defined a notion of computing real numbers in real-time with chemical reaction networks (CRNs), introducing the classes \(\mathbb {R}_\text {LCRN}\) (the class of all Lyapunov CRN-computable real numbers) and \(\mathbb {R}_\text {RTCRN}\) (the class of all real-time CRN-computable numbers). In their paper, they show the inclusion of the real algebraic numbers \(\text { ALG} \subseteq \mathbb {R}_\text {LCRN}\subseteq \mathbb {R}_\text {RTCRN}\) and that \(\text { ALG} \subsetneqq \mathbb {R}_\text {RTCRN}\) but leave open whether the inclusion is proper. In this paper, we resolve this open problem and show that \({ ALG} = \mathbb {R}_\text {LCRN}\) and, as a consequence, \(\mathbb {R}_\text {LCRN}\subsetneqq \mathbb {R}_\text {RTCRN}\). However, the definition of real-time computation by Huang et al. is fragile in the sense that it is sensitive to perturbations in initial conditions. To resolve this flaw, we further require a CRN to withstand these perturbations. In doing so, we arrive at a discrete model of memory. This approach has several benefits. First, a bounded CRN may compute values approximately in finite time. Second, a CRN can tolerate small perturbations of its species’ concentrations. Third, taking a measurement of a CRN’s state only requires precision proportional to the exactness of these approximations. Lastly, if a CRN requires only finite memory, this model and Turing machines are equivalent under real-time simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信