{"title":"非零框边简单李群","authors":"Haruo Minami","doi":"arxiv-2408.02682","DOIUrl":null,"url":null,"abstract":"Let $G$ be a compact simple Lie group equipped with the left invariant\nframing $L$. It is known that there are several groups $G$ such that $(G, L)$\nis non-null framed bordant. Previously we gave an alternative proof of these\nresults using the decomposition formula of its bordism class into a Kronecker\nproduct by E. Ossa. In this note we propose a verification formula by\nreconsidering it, through a little more ingenious in the use of this product\nformula, and try to apply it to the non-null bordantness results above.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-null framed bordant simple Lie groups\",\"authors\":\"Haruo Minami\",\"doi\":\"arxiv-2408.02682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a compact simple Lie group equipped with the left invariant\\nframing $L$. It is known that there are several groups $G$ such that $(G, L)$\\nis non-null framed bordant. Previously we gave an alternative proof of these\\nresults using the decomposition formula of its bordism class into a Kronecker\\nproduct by E. Ossa. In this note we propose a verification formula by\\nreconsidering it, through a little more ingenious in the use of this product\\nformula, and try to apply it to the non-null bordantness results above.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 $G$ 是一个紧凑的简单李群,具有左不变构型 $L$。众所周知,有几个组$G$使得$(G, L)$是非空有边框的。在此之前,我们曾利用 E. Ossa 将其边际类分解为 Kroneckerproduct 的分解公式,给出了上述结果的另一种证明。在本注释中,我们通过重新考虑它,提出了一个验证公式,通过更巧妙地使用这个乘积公式,并尝试将它应用于上述非空边界性结果。
Let $G$ be a compact simple Lie group equipped with the left invariant
framing $L$. It is known that there are several groups $G$ such that $(G, L)$
is non-null framed bordant. Previously we gave an alternative proof of these
results using the decomposition formula of its bordism class into a Kronecker
product by E. Ossa. In this note we propose a verification formula by
reconsidering it, through a little more ingenious in the use of this product
formula, and try to apply it to the non-null bordantness results above.