{"title":"通过$\\mathbb{F}_2$合成方法研究球面的经典稳定同调群","authors":"Robert Burklund, Daniel C. Isaksen, Zhouli Xu","doi":"arxiv-2408.00987","DOIUrl":null,"url":null,"abstract":"We study the $\\mathbb{F}_2$-synthetic Adams spectral sequence. We obtain new\ncomputational information about $\\mathbb{C}$-motivic and classical stable\nhomotopy groups.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical stable homotopy groups of spheres via $\\\\mathbb{F}_2$-synthetic methods\",\"authors\":\"Robert Burklund, Daniel C. Isaksen, Zhouli Xu\",\"doi\":\"arxiv-2408.00987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the $\\\\mathbb{F}_2$-synthetic Adams spectral sequence. We obtain new\\ncomputational information about $\\\\mathbb{C}$-motivic and classical stable\\nhomotopy groups.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classical stable homotopy groups of spheres via $\mathbb{F}_2$-synthetic methods
We study the $\mathbb{F}_2$-synthetic Adams spectral sequence. We obtain new
computational information about $\mathbb{C}$-motivic and classical stable
homotopy groups.