计算多参数持久性的 $γ$ 线性投影条形码

Alex Fernandes, Steve Oudot, Francois Petit
{"title":"计算多参数持久性的 $γ$ 线性投影条形码","authors":"Alex Fernandes, Steve Oudot, Francois Petit","doi":"arxiv-2408.01065","DOIUrl":null,"url":null,"abstract":"The $\\gamma$-linear projected barcode was recently introduced as an\nalternative to the well-known fibered barcode for multiparameter persistence,\nin which restrictions of the modules to lines are replaced by pushforwards of\nthe modules along linear forms in the polar of some fixed cone $\\gamma$. So\nfar, the computation of the $\\gamma$-linear projected barcode has only been\nstudied in the functional setting, in which persistence modules come from the\npersistent cohomology of $\\mathbb{R}^n$-valued functions. Here we develop a\nmethod that works in the algebraic setting directly, for any multiparameter\npersistence module over $\\mathbb{R}^n$ that is given via a finite free\nresolution. Our approach is similar to that of RIVET: first, it pre-processes\nthe resolution to build an arrangement in the dual of $\\mathbb{R}^n$ and a\nbarcode template in each face of the arrangement; second, given any query\nlinear form $u$ in the polar of $\\gamma$, it locates $u$ within the arrangement\nto produce the corresponding barcode efficiently. While our theoretical\ncomplexity bounds are similar to the ones of RIVET, our arrangement turns out\nto be simpler thanks to the linear structure of the space of linear forms. Our\ntheoretical analysis combines sheaf-theoretic and module-theoretic techniques,\nshowing that multiparameter persistence modules can be converted into a special\ntype of complexes of sheaves on vector spaces called conic-complexes, whose\nderived pushforwards by linear forms have predictable barcodes.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of $γ$-linear projected barcodes for multiparameter persistence\",\"authors\":\"Alex Fernandes, Steve Oudot, Francois Petit\",\"doi\":\"arxiv-2408.01065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\gamma$-linear projected barcode was recently introduced as an\\nalternative to the well-known fibered barcode for multiparameter persistence,\\nin which restrictions of the modules to lines are replaced by pushforwards of\\nthe modules along linear forms in the polar of some fixed cone $\\\\gamma$. So\\nfar, the computation of the $\\\\gamma$-linear projected barcode has only been\\nstudied in the functional setting, in which persistence modules come from the\\npersistent cohomology of $\\\\mathbb{R}^n$-valued functions. Here we develop a\\nmethod that works in the algebraic setting directly, for any multiparameter\\npersistence module over $\\\\mathbb{R}^n$ that is given via a finite free\\nresolution. Our approach is similar to that of RIVET: first, it pre-processes\\nthe resolution to build an arrangement in the dual of $\\\\mathbb{R}^n$ and a\\nbarcode template in each face of the arrangement; second, given any query\\nlinear form $u$ in the polar of $\\\\gamma$, it locates $u$ within the arrangement\\nto produce the corresponding barcode efficiently. While our theoretical\\ncomplexity bounds are similar to the ones of RIVET, our arrangement turns out\\nto be simpler thanks to the linear structure of the space of linear forms. Our\\ntheoretical analysis combines sheaf-theoretic and module-theoretic techniques,\\nshowing that multiparameter persistence modules can be converted into a special\\ntype of complexes of sheaves on vector spaces called conic-complexes, whose\\nderived pushforwards by linear forms have predictable barcodes.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近引入了$\gamma$线性投影条形码,作为众所周知的多参数持久性纤维条形码的替代,其中模块对线的限制被模块沿着某个固定锥$\gamma$极点的线性形式的前推所取代。迄今为止,$\gamma$线性投影条形码的计算只在函数设置中进行过研究,在函数设置中,持久性模块来自$\mathbb{R}^n$值函数的持久性同调。在这里,我们开发了一种直接在代数环境中工作的方法,适用于通过有限自由解给出的 $\mathbb{R}^n$ 上的任何多参数持久性模块。我们的方法与 RIVET 类似:首先,它对分辨率进行预处理,在 $\mathbb{R}^n$ 的对偶中建立一个排列,并在排列的每个面上建立一个条码模板;其次,给定 $\gamma$ 的极值中的任意 querylinear form $u$,它就会在排列中找到 $u$,从而高效地生成相应的条码。虽然我们的理论复杂度界限与 RIVET 的界限相似,但由于线性形式空间的线性结构,我们的排列结果更为简单。我们的理论分析结合了剪子理论和模块理论技术,表明多参数持久性模块可以转换成向量空间上一种特殊的剪子复数,称为圆锥复数,它们由线性形式推导出的前推具有可预测的条形码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of $γ$-linear projected barcodes for multiparameter persistence
The $\gamma$-linear projected barcode was recently introduced as an alternative to the well-known fibered barcode for multiparameter persistence, in which restrictions of the modules to lines are replaced by pushforwards of the modules along linear forms in the polar of some fixed cone $\gamma$. So far, the computation of the $\gamma$-linear projected barcode has only been studied in the functional setting, in which persistence modules come from the persistent cohomology of $\mathbb{R}^n$-valued functions. Here we develop a method that works in the algebraic setting directly, for any multiparameter persistence module over $\mathbb{R}^n$ that is given via a finite free resolution. Our approach is similar to that of RIVET: first, it pre-processes the resolution to build an arrangement in the dual of $\mathbb{R}^n$ and a barcode template in each face of the arrangement; second, given any query linear form $u$ in the polar of $\gamma$, it locates $u$ within the arrangement to produce the corresponding barcode efficiently. While our theoretical complexity bounds are similar to the ones of RIVET, our arrangement turns out to be simpler thanks to the linear structure of the space of linear forms. Our theoretical analysis combines sheaf-theoretic and module-theoretic techniques, showing that multiparameter persistence modules can be converted into a special type of complexes of sheaves on vector spaces called conic-complexes, whose derived pushforwards by linear forms have predictable barcodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信