{"title":"对聚酰胺 66 圆柱齿轮不同加载条件下失效模式的实验分析","authors":"Matija Hriberšek, Simon Kulovec","doi":"10.1515/polyeng-2024-0090","DOIUrl":null,"url":null,"abstract":"Engineering plastics are increasingly used for gearing systems, such as in the automotive sector, e-mobility sector, and household appliances. The basic task of the gearing system is to efficiently transfer power from the source to the application user. The use of engineering plastics for gearing applications is conditioned by the lack of tribological characteristics of material pairs which influence on fatigue and wear behaviour of the whole gearing system. The paper presents testing of the steel/Polyamide 66-gear by determining fatigue life in an infinite area, considering high precision optical measurements in the range of micro-meter accuracy of abrasion flank wear together with surface temperature in contact, providing an important database for engineers about material suitability for appropriate mechanical systems. Observing the results, gear flank wear of PA66 HT is directly proportional to the meshing temperature and torque. Thermal melting is a characteristic failure mode of the polymer gears which are exposed to higher load levels. In the middle torques, the dominant failure mode is flank fracture known as pitch point fracture. The greater impact of the gear wear mechanism occurs at lower torques where initial crack propagation starts at the pitch point and ends in the tooth root area.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of failure modes depending on different loading conditions applied on cylindrical polyamide 66 gears\",\"authors\":\"Matija Hriberšek, Simon Kulovec\",\"doi\":\"10.1515/polyeng-2024-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering plastics are increasingly used for gearing systems, such as in the automotive sector, e-mobility sector, and household appliances. The basic task of the gearing system is to efficiently transfer power from the source to the application user. The use of engineering plastics for gearing applications is conditioned by the lack of tribological characteristics of material pairs which influence on fatigue and wear behaviour of the whole gearing system. The paper presents testing of the steel/Polyamide 66-gear by determining fatigue life in an infinite area, considering high precision optical measurements in the range of micro-meter accuracy of abrasion flank wear together with surface temperature in contact, providing an important database for engineers about material suitability for appropriate mechanical systems. Observing the results, gear flank wear of PA66 HT is directly proportional to the meshing temperature and torque. Thermal melting is a characteristic failure mode of the polymer gears which are exposed to higher load levels. In the middle torques, the dominant failure mode is flank fracture known as pitch point fracture. The greater impact of the gear wear mechanism occurs at lower torques where initial crack propagation starts at the pitch point and ends in the tooth root area.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2024-0090\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Experimental analysis of failure modes depending on different loading conditions applied on cylindrical polyamide 66 gears
Engineering plastics are increasingly used for gearing systems, such as in the automotive sector, e-mobility sector, and household appliances. The basic task of the gearing system is to efficiently transfer power from the source to the application user. The use of engineering plastics for gearing applications is conditioned by the lack of tribological characteristics of material pairs which influence on fatigue and wear behaviour of the whole gearing system. The paper presents testing of the steel/Polyamide 66-gear by determining fatigue life in an infinite area, considering high precision optical measurements in the range of micro-meter accuracy of abrasion flank wear together with surface temperature in contact, providing an important database for engineers about material suitability for appropriate mechanical systems. Observing the results, gear flank wear of PA66 HT is directly proportional to the meshing temperature and torque. Thermal melting is a characteristic failure mode of the polymer gears which are exposed to higher load levels. In the middle torques, the dominant failure mode is flank fracture known as pitch point fracture. The greater impact of the gear wear mechanism occurs at lower torques where initial crack propagation starts at the pitch point and ends in the tooth root area.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.