{"title":"解决可压缩多组分流动的准保守替代 WENO 有限差分方案","authors":"Yanan Yang, Hua Shen, Zhiwei He","doi":"10.1007/s10915-024-02645-8","DOIUrl":null,"url":null,"abstract":"<p>We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows\",\"authors\":\"Yanan Yang, Hua Shen, Zhiwei He\",\"doi\":\"10.1007/s10915-024-02645-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02645-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02645-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows
We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.