通过正交球形平滑法论无衍生莱文伯格-马夸特算法的全局复杂性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xi Chen, Jinyan Fan
{"title":"通过正交球形平滑法论无衍生莱文伯格-马夸特算法的全局复杂性","authors":"Xi Chen, Jinyan Fan","doi":"10.1007/s10915-024-02649-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Global Complexity of a Derivative-Free Levenberg-Marquardt Algorithm via Orthogonal Spherical Smoothing\",\"authors\":\"Xi Chen, Jinyan Fan\",\"doi\":\"10.1007/s10915-024-02649-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02649-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02649-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对非线性最小二乘法问题提出了一种无导数的 Levenberg-Marquardt 算法,通过正交球面平滑对雅各矩阵进行近似。结果表明,使用近似雅各矩阵的梯度模型在概率上是一阶精确的。同时还给出了算法的高概率复杂度约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Global Complexity of a Derivative-Free Levenberg-Marquardt Algorithm via Orthogonal Spherical Smoothing

On the Global Complexity of a Derivative-Free Levenberg-Marquardt Algorithm via Orthogonal Spherical Smoothing

In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信