{"title":"通过正交球形平滑法论无衍生莱文伯格-马夸特算法的全局复杂性","authors":"Xi Chen, Jinyan Fan","doi":"10.1007/s10915-024-02649-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"13 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Global Complexity of a Derivative-Free Levenberg-Marquardt Algorithm via Orthogonal Spherical Smoothing\",\"authors\":\"Xi Chen, Jinyan Fan\",\"doi\":\"10.1007/s10915-024-02649-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02649-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02649-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the Global Complexity of a Derivative-Free Levenberg-Marquardt Algorithm via Orthogonal Spherical Smoothing
In this paper, we propose a derivative-free Levenberg-Marquardt algorithm for nonlinear least squares problems, where the Jacobian matrices are approximated via orthogonal spherical smoothing. It is shown that the gradient models which use the approximate Jacobian matrices are probabilistically first-order accurate. The high probability complexity bound of the algorithm is also given.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.