光谱约束优化

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Casey Garner, Gilad Lerman, Shuzhong Zhang
{"title":"光谱约束优化","authors":"Casey Garner, Gilad Lerman, Shuzhong Zhang","doi":"10.1007/s10915-024-02636-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate how to solve smooth matrix optimization problems with general linear inequality constraints on the eigenvalues of a symmetric matrix. We present solution methods to obtain exact global minima for linear objective functions, i.e., <span>\\(F(\\varvec{X}) = \\langle \\varvec{C}, \\varvec{X}\\rangle \\)</span>, and perform exact projections onto the eigenvalue constraint set. Two first-order algorithms are developed to obtain first-order stationary points for general non-convex objective functions. Both methods are proven to converge sublinearly when the constraint set is convex. Numerical experiments demonstrate the applicability of both the model and the methods.\n</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"198 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrally Constrained Optimization\",\"authors\":\"Casey Garner, Gilad Lerman, Shuzhong Zhang\",\"doi\":\"10.1007/s10915-024-02636-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate how to solve smooth matrix optimization problems with general linear inequality constraints on the eigenvalues of a symmetric matrix. We present solution methods to obtain exact global minima for linear objective functions, i.e., <span>\\\\(F(\\\\varvec{X}) = \\\\langle \\\\varvec{C}, \\\\varvec{X}\\\\rangle \\\\)</span>, and perform exact projections onto the eigenvalue constraint set. Two first-order algorithms are developed to obtain first-order stationary points for general non-convex objective functions. Both methods are proven to converge sublinearly when the constraint set is convex. Numerical experiments demonstrate the applicability of both the model and the methods.\\n</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02636-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02636-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了如何解决对称矩阵特征值上带有一般线性不等式约束的平滑矩阵优化问题。我们提出了获得线性目标函数精确全局最小值的求解方法,即 \(F(\varvec{X}) = \langle \varvec{C}, \varvec{X}\rangle \),并对特征值约束集进行精确投影。为获得一般非凸目标函数的一阶静止点,开发了两种一阶算法。当约束集是凸的时候,这两种方法都能以亚线性方式收敛。数值实验证明了模型和方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectrally Constrained Optimization

Spectrally Constrained Optimization

We investigate how to solve smooth matrix optimization problems with general linear inequality constraints on the eigenvalues of a symmetric matrix. We present solution methods to obtain exact global minima for linear objective functions, i.e., \(F(\varvec{X}) = \langle \varvec{C}, \varvec{X}\rangle \), and perform exact projections onto the eigenvalue constraint set. Two first-order algorithms are developed to obtain first-order stationary points for general non-convex objective functions. Both methods are proven to converge sublinearly when the constraint set is convex. Numerical experiments demonstrate the applicability of both the model and the methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信