{"title":"中复杂度大气研究模式在河南 21.7 暴雨预报中的应用","authors":"Xingbao Wang, Qun Xu, Xiajun Deng, Hongjie Zhang, Qianhong Tang, Tingting Zhou, Fengcai Qi, Wenwu Peng","doi":"10.3390/atmos15080959","DOIUrl":null,"url":null,"abstract":"To improve the forecast accuracy of heavy precipitation, re-forecasts are conducted for the Henan 21.7 rainstorm. The Intermediate Complexity Atmospheric Research Model (ICAR) and the Weather Research and Forecasting Model (WRF) with a 1 km horizontal grid spacing are used for the re-forecasts. The results indicate that heavy precipitation forecasted by ICAR primarily accumulates on the windward slopes of the mountains. In contrast, some severe precipitation forecasted by WRF is beyond the mountains. The main difference between ICAR and WRF is that ICAR excludes the “impacts of physical processes on winds and the nonlinear interactions between the small resolvable-scale disturbances” (briefed as the “physical–dynamical interactions”). Thus, heavy precipitation beyond the mountains is attributed to the “physical–dynamical interactions”. Furthermore, severe precipitation on the windward slopes of the mountains typically aligns with the observations, whereas heavy rainfall beyond the mountains seldom matches the observations. Therefore, severe precipitation on the windward slopes of (beyond) the mountains is more (less) predictable. Based on these findings and theoretical thinking about the predictability of severe precipitation, a scheme of using the ICAR’s prediction to adjust the WRF’s prediction is proposed, thereby improving the forecast accuracy of heavy rainfall.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"10 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm\",\"authors\":\"Xingbao Wang, Qun Xu, Xiajun Deng, Hongjie Zhang, Qianhong Tang, Tingting Zhou, Fengcai Qi, Wenwu Peng\",\"doi\":\"10.3390/atmos15080959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the forecast accuracy of heavy precipitation, re-forecasts are conducted for the Henan 21.7 rainstorm. The Intermediate Complexity Atmospheric Research Model (ICAR) and the Weather Research and Forecasting Model (WRF) with a 1 km horizontal grid spacing are used for the re-forecasts. The results indicate that heavy precipitation forecasted by ICAR primarily accumulates on the windward slopes of the mountains. In contrast, some severe precipitation forecasted by WRF is beyond the mountains. The main difference between ICAR and WRF is that ICAR excludes the “impacts of physical processes on winds and the nonlinear interactions between the small resolvable-scale disturbances” (briefed as the “physical–dynamical interactions”). Thus, heavy precipitation beyond the mountains is attributed to the “physical–dynamical interactions”. Furthermore, severe precipitation on the windward slopes of the mountains typically aligns with the observations, whereas heavy rainfall beyond the mountains seldom matches the observations. Therefore, severe precipitation on the windward slopes of (beyond) the mountains is more (less) predictable. Based on these findings and theoretical thinking about the predictability of severe precipitation, a scheme of using the ICAR’s prediction to adjust the WRF’s prediction is proposed, thereby improving the forecast accuracy of heavy rainfall.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15080959\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080959","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm
To improve the forecast accuracy of heavy precipitation, re-forecasts are conducted for the Henan 21.7 rainstorm. The Intermediate Complexity Atmospheric Research Model (ICAR) and the Weather Research and Forecasting Model (WRF) with a 1 km horizontal grid spacing are used for the re-forecasts. The results indicate that heavy precipitation forecasted by ICAR primarily accumulates on the windward slopes of the mountains. In contrast, some severe precipitation forecasted by WRF is beyond the mountains. The main difference between ICAR and WRF is that ICAR excludes the “impacts of physical processes on winds and the nonlinear interactions between the small resolvable-scale disturbances” (briefed as the “physical–dynamical interactions”). Thus, heavy precipitation beyond the mountains is attributed to the “physical–dynamical interactions”. Furthermore, severe precipitation on the windward slopes of the mountains typically aligns with the observations, whereas heavy rainfall beyond the mountains seldom matches the observations. Therefore, severe precipitation on the windward slopes of (beyond) the mountains is more (less) predictable. Based on these findings and theoretical thinking about the predictability of severe precipitation, a scheme of using the ICAR’s prediction to adjust the WRF’s prediction is proposed, thereby improving the forecast accuracy of heavy rainfall.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.