Pengyu Zhao, Yikang Jia, Sihong Ma, Rui Zhang, Kaiyu Li, Tianyi Song, Jianbao Zheng, Jingyao Zhang, Li Guo, Dingxin Liu, Xiaohua Wang and Mingzhe Rong
{"title":"比较用滑弧放电激活的不同 N2/O2 比率等离子气体制备的等离子激活生理盐水","authors":"Pengyu Zhao, Yikang Jia, Sihong Ma, Rui Zhang, Kaiyu Li, Tianyi Song, Jianbao Zheng, Jingyao Zhang, Li Guo, Dingxin Liu, Xiaohua Wang and Mingzhe Rong","doi":"10.1088/1361-6463/ad687e","DOIUrl":null,"url":null,"abstract":"Methicillin-resistant Staphylococcus aureus (MRSA) presents a significant threat due to the multiple resistance to antibiotics, leading to severe and challenging-to-treat infections. Plasma-activated saline (PAS) prepared by plasma gases, could efficiently inactivate various pathogenic bacteria including both sensitive and antibiotic-resistant bacteria. In this study, the PAS was prepared by plasma gases with different ratios of N2 and O2 activated by gliding arc discharge. First, the gaseous reactive species in the plasma gases were compared, revealing that the highest levels of NOx including NO2 and N2O5 were generated in the gases with the N2/O2 ratios of 4:6, 5:5, and 6:4. Subsequently, the PAS prepared by the two plasma-activated gases at the N2/O2 ratios of 5:5 and 6:4 exhibited the strongest inactivation effects on both planktic MRSA and biofilms. Furthermore, the aqueous reactive species in the PAS exhibited varied change trends with the increasing N2/O2 ratios. Additionally, ultraviolet spectroscopy combined with the probe of N, N-diethyl-p-phenylenediamine was applied for the detection of O2NOO− in the PAS, and the levels of O2NOO− in the PAS were positively correlated with the inactivation effects. Moreover, the PAS induced varying levels of nitration modification on the soluble proteins in MRSA cells, which were related to the intensities of O2NOO− in the PAS. This study regulated the reactive species in the PAS through gas composition and explored the inactivation mechanism of the PAS, providing a new strategy to promote the preparation efficiency of plasma-activated solutions for biomedical applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"61 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of plasma-activated saline prepared with plasma gases with different N2/O2 ratios activated by gliding arc discharge\",\"authors\":\"Pengyu Zhao, Yikang Jia, Sihong Ma, Rui Zhang, Kaiyu Li, Tianyi Song, Jianbao Zheng, Jingyao Zhang, Li Guo, Dingxin Liu, Xiaohua Wang and Mingzhe Rong\",\"doi\":\"10.1088/1361-6463/ad687e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methicillin-resistant Staphylococcus aureus (MRSA) presents a significant threat due to the multiple resistance to antibiotics, leading to severe and challenging-to-treat infections. Plasma-activated saline (PAS) prepared by plasma gases, could efficiently inactivate various pathogenic bacteria including both sensitive and antibiotic-resistant bacteria. In this study, the PAS was prepared by plasma gases with different ratios of N2 and O2 activated by gliding arc discharge. First, the gaseous reactive species in the plasma gases were compared, revealing that the highest levels of NOx including NO2 and N2O5 were generated in the gases with the N2/O2 ratios of 4:6, 5:5, and 6:4. Subsequently, the PAS prepared by the two plasma-activated gases at the N2/O2 ratios of 5:5 and 6:4 exhibited the strongest inactivation effects on both planktic MRSA and biofilms. Furthermore, the aqueous reactive species in the PAS exhibited varied change trends with the increasing N2/O2 ratios. Additionally, ultraviolet spectroscopy combined with the probe of N, N-diethyl-p-phenylenediamine was applied for the detection of O2NOO− in the PAS, and the levels of O2NOO− in the PAS were positively correlated with the inactivation effects. Moreover, the PAS induced varying levels of nitration modification on the soluble proteins in MRSA cells, which were related to the intensities of O2NOO− in the PAS. This study regulated the reactive species in the PAS through gas composition and explored the inactivation mechanism of the PAS, providing a new strategy to promote the preparation efficiency of plasma-activated solutions for biomedical applications.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad687e\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad687e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Comparison of plasma-activated saline prepared with plasma gases with different N2/O2 ratios activated by gliding arc discharge
Methicillin-resistant Staphylococcus aureus (MRSA) presents a significant threat due to the multiple resistance to antibiotics, leading to severe and challenging-to-treat infections. Plasma-activated saline (PAS) prepared by plasma gases, could efficiently inactivate various pathogenic bacteria including both sensitive and antibiotic-resistant bacteria. In this study, the PAS was prepared by plasma gases with different ratios of N2 and O2 activated by gliding arc discharge. First, the gaseous reactive species in the plasma gases were compared, revealing that the highest levels of NOx including NO2 and N2O5 were generated in the gases with the N2/O2 ratios of 4:6, 5:5, and 6:4. Subsequently, the PAS prepared by the two plasma-activated gases at the N2/O2 ratios of 5:5 and 6:4 exhibited the strongest inactivation effects on both planktic MRSA and biofilms. Furthermore, the aqueous reactive species in the PAS exhibited varied change trends with the increasing N2/O2 ratios. Additionally, ultraviolet spectroscopy combined with the probe of N, N-diethyl-p-phenylenediamine was applied for the detection of O2NOO− in the PAS, and the levels of O2NOO− in the PAS were positively correlated with the inactivation effects. Moreover, the PAS induced varying levels of nitration modification on the soluble proteins in MRSA cells, which were related to the intensities of O2NOO− in the PAS. This study regulated the reactive species in the PAS through gas composition and explored the inactivation mechanism of the PAS, providing a new strategy to promote the preparation efficiency of plasma-activated solutions for biomedical applications.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.