Liu Liu, Anding Li, Yukun Chen, Ruirui Liu, Jiayue Xu, Jiwei Zhai, Zhitang Song and Sannian Song
{"title":"多层 Ge8Sb92/Ge2Sb2Te5 薄膜:为相变随机存取存储器揭示不同的电阻状态并提高性能","authors":"Liu Liu, Anding Li, Yukun Chen, Ruirui Liu, Jiayue Xu, Jiwei Zhai, Zhitang Song and Sannian Song","doi":"10.1088/1361-6463/ad6a25","DOIUrl":null,"url":null,"abstract":"This study investigates the phase-change properties of [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1 multilayer thin films, elucidating three distinct resistance states originating from two structural transitions: initial Sb precipitation and Ge2Sb2Te5-FCC crystallization, followed by Ge2Sb2Te5-FCC to Ge2Sb2Te5-HEX transformation with additional Sb precipitation. The phase transitions induce two abrupt changes in resistance at temperatures of 169.8 °C and 197.7 °C, respectively, with corresponding data retention temperatures of 97 °C and 129 °C, indicating robust thermal stability. The [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1-based phase change random access memory (PCRAM) device demonstrates reversible switching characteristics and multi-level storage capabilities within 20 ns, showcasing enhanced phase-change speed and storage density. In summary, [Ge8Sb92(25 nm)-Ge2Sb2Te5(25 nm)]1 demonstrates enhanced thermal stability, swift phase transition, and increased storage density relative to conventional Ge2Sb2Te5, establishing it as a promising new phase-change material for PCRAM applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"61 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer Ge8Sb92/Ge2Sb2Te5 thin films: unveiling distinct resistance states and enhanced performance for phase change random access memory\",\"authors\":\"Liu Liu, Anding Li, Yukun Chen, Ruirui Liu, Jiayue Xu, Jiwei Zhai, Zhitang Song and Sannian Song\",\"doi\":\"10.1088/1361-6463/ad6a25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the phase-change properties of [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1 multilayer thin films, elucidating three distinct resistance states originating from two structural transitions: initial Sb precipitation and Ge2Sb2Te5-FCC crystallization, followed by Ge2Sb2Te5-FCC to Ge2Sb2Te5-HEX transformation with additional Sb precipitation. The phase transitions induce two abrupt changes in resistance at temperatures of 169.8 °C and 197.7 °C, respectively, with corresponding data retention temperatures of 97 °C and 129 °C, indicating robust thermal stability. The [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1-based phase change random access memory (PCRAM) device demonstrates reversible switching characteristics and multi-level storage capabilities within 20 ns, showcasing enhanced phase-change speed and storage density. In summary, [Ge8Sb92(25 nm)-Ge2Sb2Te5(25 nm)]1 demonstrates enhanced thermal stability, swift phase transition, and increased storage density relative to conventional Ge2Sb2Te5, establishing it as a promising new phase-change material for PCRAM applications.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6a25\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6a25","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Multilayer Ge8Sb92/Ge2Sb2Te5 thin films: unveiling distinct resistance states and enhanced performance for phase change random access memory
This study investigates the phase-change properties of [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1 multilayer thin films, elucidating three distinct resistance states originating from two structural transitions: initial Sb precipitation and Ge2Sb2Te5-FCC crystallization, followed by Ge2Sb2Te5-FCC to Ge2Sb2Te5-HEX transformation with additional Sb precipitation. The phase transitions induce two abrupt changes in resistance at temperatures of 169.8 °C and 197.7 °C, respectively, with corresponding data retention temperatures of 97 °C and 129 °C, indicating robust thermal stability. The [Ge8Sb92 (25 nm)-Ge2Sb2Te5 (25 nm)]1-based phase change random access memory (PCRAM) device demonstrates reversible switching characteristics and multi-level storage capabilities within 20 ns, showcasing enhanced phase-change speed and storage density. In summary, [Ge8Sb92(25 nm)-Ge2Sb2Te5(25 nm)]1 demonstrates enhanced thermal stability, swift phase transition, and increased storage density relative to conventional Ge2Sb2Te5, establishing it as a promising new phase-change material for PCRAM applications.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.