Manish Kumar Singh, Kadiyam Anusha, A. D. D. Dwivedi
{"title":"通过石墨烯集成增强基于五碳烯的有机晶体管的器件特性:模拟研究与性能分析","authors":"Manish Kumar Singh, Kadiyam Anusha, A. D. D. Dwivedi","doi":"10.1063/5.0218617","DOIUrl":null,"url":null,"abstract":"Transistors find application within various integrated circuits (ICs) alongside a multitude of electronic devices. These ICs have become integral components in contemporary systems. When organic semiconducting materials constitute the active layer, transistors are termed “organic transistors.” The enhancement of diverse device characteristics is achievable through the modeling and simulation of these organic transistors. This study focuses on the simulation of different configurations of pentacene-based organic transistors. To augment device performance, an active layer comprising pentacene is coupled with 5 and 15 nm graphene. Notably, the top gate configuration yields an increase in ON/OFF ratio from 102 to 107, accompanied by an enhancement in sub-threshold swing from 276 to 59 mV/decade. Similarly, the bottom gate configuration exhibits an ON/OFF ratio improvement from 105 to 109, alongside a sub-threshold swing enhancement from 108 to 59 mV/decade. Leveraging graphene as the active layer material results in substantial benefits. These encompass a heightened on-current of 210 mA, a reduced sub-threshold swing of 58 mV/decade, and a significantly enhanced ON/OFF ratio of 1017.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing device characteristics of pentacene-based organic transistors through graphene integration: A simulation study and performance analysis\",\"authors\":\"Manish Kumar Singh, Kadiyam Anusha, A. D. D. Dwivedi\",\"doi\":\"10.1063/5.0218617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transistors find application within various integrated circuits (ICs) alongside a multitude of electronic devices. These ICs have become integral components in contemporary systems. When organic semiconducting materials constitute the active layer, transistors are termed “organic transistors.” The enhancement of diverse device characteristics is achievable through the modeling and simulation of these organic transistors. This study focuses on the simulation of different configurations of pentacene-based organic transistors. To augment device performance, an active layer comprising pentacene is coupled with 5 and 15 nm graphene. Notably, the top gate configuration yields an increase in ON/OFF ratio from 102 to 107, accompanied by an enhancement in sub-threshold swing from 276 to 59 mV/decade. Similarly, the bottom gate configuration exhibits an ON/OFF ratio improvement from 105 to 109, alongside a sub-threshold swing enhancement from 108 to 59 mV/decade. Leveraging graphene as the active layer material results in substantial benefits. These encompass a heightened on-current of 210 mA, a reduced sub-threshold swing of 58 mV/decade, and a significantly enhanced ON/OFF ratio of 1017.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218617\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0218617","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing device characteristics of pentacene-based organic transistors through graphene integration: A simulation study and performance analysis
Transistors find application within various integrated circuits (ICs) alongside a multitude of electronic devices. These ICs have become integral components in contemporary systems. When organic semiconducting materials constitute the active layer, transistors are termed “organic transistors.” The enhancement of diverse device characteristics is achievable through the modeling and simulation of these organic transistors. This study focuses on the simulation of different configurations of pentacene-based organic transistors. To augment device performance, an active layer comprising pentacene is coupled with 5 and 15 nm graphene. Notably, the top gate configuration yields an increase in ON/OFF ratio from 102 to 107, accompanied by an enhancement in sub-threshold swing from 276 to 59 mV/decade. Similarly, the bottom gate configuration exhibits an ON/OFF ratio improvement from 105 to 109, alongside a sub-threshold swing enhancement from 108 to 59 mV/decade. Leveraging graphene as the active layer material results in substantial benefits. These encompass a heightened on-current of 210 mA, a reduced sub-threshold swing of 58 mV/decade, and a significantly enhanced ON/OFF ratio of 1017.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.